
 
 

  

Abstract—Embedded operating systems (EOS) manage the 
resources of the system and control device operations, and play 
an important role on optimizing system energy consumption. 
This paper proposes a new approach to estimate and optimize 
the energy consumption of the EOS and the applications at a 
fine-grained level. The approach is based on a 
micro-architectural power model and a new estimation model 
for operating system energy consumption. We apply the 
approach to an Intel Strong-Arm architecture platform running 
embedded Linux 2.4.18, analyzing its energy characteristics and 
also trying to optimize energy of the applications on it based on 
the analyzing results. The experiments demonstrate that the 
approach can identify energy consumption of fine-grained 
software components correctly and be used to optimize the 
energy consumption of EOS and applications. 

I. INTRODUCTION 
ue to the severely limited energy supply and the growing 
capability for executing resource-intensive tasks, 

reducing the power dissipation of systems becomes a primary 
design target for mobile computers and portable embedded 
systems.[1-2]. In order to improve the energy efficiency of 
the system, evaluating energy consumption of various 
components in the system from the perspective of software is 
very important. 

Software energy consumption is defined as the energy 
consumption of the system components while the programs 
running on processor and during memory accesses. In order 
to estimate energy consumption of EOS and applications 
during the early design stage of embedded systems, software 
energy consumption estimation techniques based on power 
model and estimation model needs to be established 
beforehand.  

Recently, there are a lot of research on software energy 
consumption model [3] and evaluation approach on 
embedded systems [4-5] and user-level applications [6]. 
Detailed and fine-grained energy consumption characteristics 
estimation and analysis of embedded operating system is 
lacking.  

In most of multi-tasks embedded operating systems, 
system calls are application developers-perceived interfaces 
of EOS. Besides system calls, there are many other kernel 
services and routines running underlying the interface, such 
as interrupt handlers, exception handlers, and schedule 
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routines. These routines are invoked by random events that 
are invisible from outside. It becomes difficult to estimate 
energy consumption of EOS in a finer granularity using the 
existing methods. Furthermore, it is much more difficult to 
optimize EOS and applications energy consumption without 
fine-grained energy estimation ability. 

In this paper, we propose a new approach to estimate and 
optimize the energy consumption of EOS and applications 
efficiently. We propose a estimation model for operating 
system energy consumption based on a micro-architectural 
power model and EOS functionality and structural 
characteristics. The proposed approach is able to estimate 
energy consumption of system calls and kernel execution 
path separately. The experiments demonstrate that the 
approach can estimate energy consumption of fine-grained 
software components correctly and be used to optimize the 
energy consumption of an EOS and applications running on 
it.  

The remainder of the paper is organized as follows. Section 
2 presents the proposed approach, including the fine-grained 
EOS energy consumption estimation model. Section 3 
describes experiment results. Section 4 shows an energy 
optimization example. Section 5 reviews related work. 
Finally, Section 6 concludes the paper. 

II. FINE-GRAINED ENERGY ESTIMATION OF AN EOS 

A. Overview 
An overview of the proposed estimation framework is 

illustrated in Fig. 1. Within the framework are three major 
components: a full-system instruction level simulator 
executing the OS and applications; a micro-architectural 
power simulator estimating cycle-accurate power dissipation 
of instructions, and a software energy analyzer integrating 
multiple-granularity software energy consumption. The 
inputs to the framework are an executable binary OS kernel 
image file and a root file system involving user-level test 
programs. 

The full system instruction simulator simulates 
functionalities of microprocessor and peripherally 
components, and can run an unmodified embedded OS. It 
outputs run-time instruction and address streams to the 
micro-architectural power simulator through a message 
queue. The micro-architectural power simulator simulates 
operations of micro-architectural components of pipelines 
and memory access. During instructions execution in the 
pipeline, the simulator calculating per-cycle power 
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dissipation of micro-architectural components based on their 
power model [6]. It sends cycle-accurate power consumption 
of instructions and corresponding instruction addresses to 
the software energy analyzer. The latter treats a run-time 
operating system as a set of logical units consisting of 
atomic functions, routines, services, and execution paths. It 
builds run-time function call tree on the fly by analyzing 
instruction-address sequence and symbol information of OS; 
and then calculates multiple-granularity software energy 
consumption of OS based on software energy 
estimation-model.  

 
The power model accounts for effects such as branch 

delays, pipeline stalls, control-flow mispredictions, cache 
misses, etc. It arranges the micro-architectural components 
into four classes: datapath, cache, clock, and memory. The 
power dissipation of datapath, cache and clock are estimated 
based on the model proposed by Austin etc. [7]. The off-chip 
memory system has different states during the execution of 
the system, and the active state consumes major parts of the 
energy. We use the current in active state to model the energy 
consumption of the memory.  

The energy consumption of an instruction flowing along 
the pipeline is calculated by the following equation:  

i datapath cache sram clock misce e e e e e= + + + +       （1） 
Where, datapathe is the energy dissipation of datapath in 

pipelines, cachee is that of the Cache, srame is that of the TLB, 

clocke is that of the clock circuits, and misce  is the that of 
miscellaneous logical units. 

B. Fine-grained EOS energy consumption estimation model 
To accurately estimate EOS energy consumption at a finer 

granularity, we propose a new energy consumption 
estimation model that treats the run-time EOS as a set of 
logical units organized in hierarchy based on their 
functionality and structural characteristics.  

We define four types of units in EOS, namely atomic 
function, routine, service, and execution path. An atomic 
function is an atomic unit of EOS consisting of sequential 
instructions, without invoking other functions. A routine is a 
collection of instructions and atomic functions calling each 
other. A service is a kind of special routine with special entry 

and executes through the hardware trap mechanism. Services 
can be divided into three classes: system call, exception 
service and interrupt service. A kernel execution path 
describes a process beginning with the first instruction in 
kernel mode, and ending at the return instruction to user 
mode, which is compose of routines and services. 
1) Energy consumption of atomic functions 

Energy consumed by an atomic function is defined as the 
sum of per-cycle power dissipation of sequential instructions 
belonging to the atomic function. The per-cycle power 
dissipation is the sum of power dissipation of every processor 
components in one cycle. In order to ensure the validity of the 
function energy calculation by accumulating the per-cycle 
power dissipation of instructions within an atomic function, 
we exploit the combinability of the summarize operation by 
pipeline simulation.  

Another issue of atomic function energy estimation is to 
determine whether an instruction belongs to a certain 
function. We propose an approach of comparing instructions 
address with function symbol information to identify 
sub-function invocation and return. We set up a function 
symbol table, and build run-time function call tree to identify 
the complex program structure. 

2) Energy consumption of routines and services 
A routine can be represented as a runtime function call tree 

consisting of functions with invocation relations among them. 
The energy consumption of the routine is defined as the 
energy consumption of the root node, noted as

0Routine fE E= , 
which is calculated by recursive aggregation of the energy 
consumption of its sub-tree nodes. Given the routine’s 
function call tree consisting of node 0 1 n, ,...,f f f , every node 
denotes a function, 0f  is the root node. Let 

if
E  is the energy 

consumption of the function fi, if
I is the instruction set of this 

function, j1 j2 jmf , f ,..., f  ( 1 2 mi < j < j < ...< j < n ) are its 

sub-functions, and ie is the per-cycle energy consumption of 
instructions; then, the energy consumption of any node on this 
tree is the sum of energy consumption of its sub-function and 
all instructions belong to this node directly, expressed as 
follow:  
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The estimation algorithm of EOS routine and service 
energy consumption is as Figure 2. 

The energy estimation of a kernel service is similar as a 
routine. The only difference is that kernel service has special 
program entries, and needs to be identified among instruction 
streams. 
3) Energy consumption of execution paths 

The existing energy estimation approaches [8-9] calculate 
energy consumption of a system call with energy 
consumption of the process from the first instruction into 
kernel mode to the last instruction return to user mode. In fact, 
they misestimated it by assigning the energy consumption 
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Fig. 1.  Overview of the proposed estimation approach 
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throughout the process as the energy consumption of the 
system call.  

 
In order to estimate and analyze the kernel energy 

consumption accurately, we define this process as kernel 
execution path, which including system call services and 
other services. Therefore, kernel services are classified into 
two types. An explicit service is defined as a system call 
service which is invoked by user programs, and only consists 
of routines implementing the system call function, such as 
sys_read etc. An implicit service is defined as a kernel service 
which is transparent to user programs, and has no direct 
relations with the current execution, such as interrupt and 
exception handlers.  

Hence, we distinguish the system call service from system 
call process. The frontier is an explicit service, while the latter 
is a kernel execution path. Energy estimation of kernel 
execution path can be done in two cases. 1) simple execution 
path: This execution path is composed of a system call 
service without interrupted, and its energy 
consumption execpathE is the energy of the service serviceE . 2) 
complex execution path: when the explicit service is 
interrupted, the execution path is a forest of function call trees 
including explicit services and implicit services throughout 
the process. The energy of the path is the sum of energy of all 
the sub-trees. The expression is as follow:  

( )

( )

explict_service
execpath

explict_service implict_service Routine

E
E

E E E
= +

                                 simple execution path

+     complex executionpath
（3） 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 
We implement an energy consumption estimation tool, 

which simulates an embedded system featuring a StrongARM 
micro-processor, and estimates the energy consumption of 
the embedded operating system kernel ARMLinux 2.4.18. 
The tool consists of an improved full system instruction 
simulator based on Skyeye [10], an improved 
micro-architectural power simulator [7] and a software 
energy analyzer. Table 1 shows the configuration of the 
micro-architectural model used for our experiments. 

Some of our test programs come from real embedded 
system application software, while others are designed to 

exercise specific OS routines and services. Table 2 shows the 
list of benchmarks used. 

 
The output of the estimation tool is a hierarchical list of 

function call trees with properties of routine on each tree 
node. As shown in Figure 4, every property includes the 
routine name and energy consumption calculated on 
micro-architectural datapath and memory access separately. 

 
A. Energy consumption of kernel routines and services 

We classify the test programs into two categories: 
interactive and non-interactive. From the data shown in Fig. 
3, we observed the following characteristics of the kernel 
energy consumption. 

 
1) The percentage of energy consumption of processor 

idle (arch_idle) in interactive applications is much higher 
than that of in non-interactive applications. The former is 
81% in overall energy consumption, while the latter is only 
3%, because of the notable processor idle waiting time during 

TABLE I 
MICRO-ARCHITECTURE MODEL 

Parameter Value 
Feature Size 0.18um 
Vdd 1.5V 
Frequency 200MH 
Fetch/Issue/Retire Width 2 (inorder) 
RUU/LSQ  size 4 
L1 I-Cache 16KB (32B cache line, 2-way assoc.) 
L1 D-Cache 8KB (32B cache line, 32-way assoc.) 
TLB (full assoc) entries 32 

TABLE Ⅱ 
BENCHMARKS  

Interactive programs Non-interactive programs 

cat, ls, ln, echo, more, du  rm, mount, cp, gzip, gunzip, tar 
ifconfig, ftpget, telnet netstat  

ps, whoami kill, chgrp, 
Msg client, Shm client  Msg server, Shm server, pipes 

Eenergy consumption of services
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Fig.3.  Distribution of Number and Energy Consumption of 

Routines and Services 

 Repeat: 
Fetch the instructions address and energy from the buffer 

queue; 
Identify the function which the instruction belongs to; 

assign the function name to variable func; 
IF (is system call or exception entry) THEN new a tree; 
Assign the current node to pointer variable cur_node; 
IF (func equals cur_node) THEN 
   Add the energy of the instruction to the current node, 

CONTINUE; 
Search the function tree which the instruction belongs to 
IF (an node is found) THEN  

Assign the current node to pointer variable pre_node; 
Assign the found node to pointer variable cur_node; 
Add the pre_node energy to cur_node; 
CONTINUE; 

New a tree, and assign new node to cur_node; 
 

Fig.2.  Pseudo Code of Estimation Algorithm of EOS Routine and 
Service Energy Consumption 
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human-computer interaction. 
2) The number of invocation and energy consumption of 

system calls (sys_xxx) in two scenarios are quite different. In 
the interactive scenario, the number of system calls makes up 
37% of overall kernel invocations, which is 17% higher than 
in non-interactive applications. However, the energy 
consumption of the former is only 8%, 34% lower than the 
latter’s.  

3) The number and energy consumption of exception 
(page fault exception and prefetch exception) handling 
archive a significant proportion to overall kernel energy 
consumption in both scenarios. The explanation for this is 
that on the StrongARM platform, ARMLinux kernel manages 
the memory with virtual memory technology, which loads 
codes and data of the process into memory through 
on-demand paging and prefetch paging mechanisms. 

It can be concluded that processor idle is one of main 
sources of energy consumption in interactive system, while 
the system calls and exception handling are major sources of 
energy consumption in non-interactive system. So 
optimization of these kernel routines and services is one way 
to reduce energy consumption of EOS. 

B. Functionality vs. energy consumption of routines and 
services 

The experiment results indicate that energy consumption of 
kernel routine/service is directly related to the complexity of 
its functionality. Table 3 gives the results of statistic of energy 
consumption of some kernel routines/services. 

 
1) The routines with simple functionalities have low and 

stable energy consumption. The mean of energy consumption 
of the ID operation routines, such as sys_gerpid, is not more 
than 5uJ. The standard deviation of these routines is not more 
than 2. 

2) The kernel routines/services with remarkable energy 
consumption should be given more attentions. For example, 
sys_fork is used to create new process, it energy consumption 
is 89.40uJ, which is higher than that of sys_clone, which is 
used to create new thread in the same process. If we can use 
sys_clone instead of sys_fork to perform concurrent 

operations, we can reduce the cost of time, memory and 
energy consumption. 

3) The energy consumption of complex services and kernel 
execution paths are quite different in different scenarios. As 
shown by Figure 4, the different kernel execution paths with 
the same system call have distinct function call tree and 
energy consumption under different conditions. 

 
C. Energy consumption of system calls 
In a multi-tasks concurrent operating system, with implicit 

services in kernel execution path, some system calls are 
different from system call processes, and the energy 
consumptions of them are very different. 

 
As shown in Table 4,  sys_read system call process has 

three types of kernel execution paths under different cases. 
The first case is performing tty_read to read a user input from 
keyboard which has some implicit services. The energy 
consumption of sys_read system call process is 1705uJ, while 
the energy consumption of sys_read system call is just 41uJ, 
holding not more than 3% of that in total process. The second 
case is performing generic_file_read to read a file from the 
storage and the energy is 123 uJ. The implicit services 
dabt_handler are invocated to load the file from flash device 
to memory. The third case is performing generic_file_read to 
read some data existing in memory and the energy is 40uJ. 
The energy consumptions of system call and system call 
process are the same, because no implicit services are 
invoked.   

The results demonstrate that the implicit services have 
significant impact on the energy estimation of OS system 

 sys_read(micro:17.005,mem:0.000) 
fget(micro: 8.527,mem:0.000) 
generic_file_read(micro: 3.336,mem:0.000) 

do_generic_file_read(micro:2.854,mem:0.000) 
update_atime(micro:1.534,mem:0.000,) 

fput(micro: 1.130,mem:0.000)    
)    
 (a) Energy consumption of sys_read in execution path of generic_file_read  

 
 sys_read(micro:17756.991,mem:0.000, 

    fget(micro:3.058,mem:0.000,) 
    tty_read(micro:17750.125,mem:0.000, 
        read_chan(micro:17749.156,mem:0.000, 

  ...  
schedule(micro:2.124,mem:0.000, 

__switch_to(micro:1.200,mem:0.000,) 
cpu_idle(micro: 17720.347,mem:0.000,) 
__irq_svc(micro: 31.609,mem:0.000, 

    fput(micro: 1.132,mem:0.000) 
)         
(b)  Energy consumption of sys_read in execution path of tty_read 

 
Fig.4.  Energy Consumption of Different Execution Paths  

TABLE Ⅳ 
ENERGY CONSUMPTION OF DIFFERENT PATHS（UJ）  

OS service name tty_read 
generic_file_read 
（from storage） 

generic_file_read（
from memory） 

Execution 1705 123 40 
Explicit 41 78 40 
interrupt 130 45 0 
schedule 10 0 0 

Idle process 1476 0 0 

Timer interrupt 48 0 0 
Proportion of 

Explicit services 2.46% 63.41% 100% 

TABLE Ⅲ 
ENERGY CONSUMPTION OF SOME ROUTINES AND SERVICES 

Name Counts of 
executions Energy consumption（uJ） 

  Means Min Max Std. 
sys_getegid 25 4.99 3.52 9.51 1.70 
sys_getgid 20 2.17 1.95 2.71 0.18 
sys_getpid 19 1.55 0.20 2.17 0.41 

__switch_to 110 1.24 1.08 1.78 0.16 
__wake_up 427 2.78 0.20 5.97 0.77 

sys_brk 147 12.21 4.45 29.60 7.00 
sys_fork 24 89.40 73.10 113.73 11.04 

sys_execv 24 453.31 372.00 1219.60 164.83 
sys_exit 21 138.34 115.81 188.5 19.09 

sys_clone 6 43.88 25.18 72.39 16.24 
sys_open 44 71.63 29.2 445.94 62.105 
sys_write 291 80.97 38.72 204.94 32.71 
sys_read 266 44.74 8.1 355 40.78 
sys_close 66 78.44 8.02 330.58 93.59 

__dabt_svc 39 46.04 32.98 165.15 20.53 
__pabt_user 1211 34.27 191.27 402.69 37.36 
__irq_svc 244 34.12 9.5 86.57 12.41 

 

93

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore.  Restrictions apply.



 
 

calls and applications. With the approach proposed by this 
paper, we can distinguish energy consumption of a system 
call from a execution path based on the fine-grained energy 
consumption information, and can identify key factors of the 
EOS energy consumption for software energy consumption 
optimization. 

IV. ENERGY OPTIMIZATION IN AN EOS 
Based on the above analysis, we show how to optimize an 

Inter-Processes Communication (IPC) mechanism selection 
for given programs to reduce energy consumption. The basic 
objective of optimization is to select energy efficient IPC 
and minimize the number of IPC, reducing intervention of 
underlying OS services. The optimization has following 
properties: 

1） The functionalities of applications remain the same as 
before; 

2） The total volume of IPC messages passed between the 
two processes remains the same as before; 

Consider two chat programs implemented on a 
multi-processes EOS. As shown in Figure 5, the chat 
programs consist of two processes, server and client. The 
client process reads string inputting by user, and passes the 
string to the server process that is waiting on another IPC end. 
The server receives the string and displays it. Three different 
IPC mechanisms, namely pipe, message queue and sharing 
memory are implemented respectively. The functionality and 
the communicated data are the same in each IPC mechanism.  

 
Energy consumptions of three IPC mechanisms in the chat 

programs are quite different. As shown in Figure 6, message 
queue tends to be more energy-efficient compared to pipe and 
sharing memory. Based on the analysis of energy 
consumption of these IPC mechanisms, we select message 
queue to implement the data communication in the chat 
programs. As shown in Fig. 6(b), Energy consumption of 
message queue mechanism during one time execution of the 
chat programs is only 2.7mJ, that of pipe mechanism is 
6.8mJ, and that of share memory mechanism is 12.9mJ. 
Hence, the message queue mechanism can reducing 
59%energy consumption than pipe mechanism, and  78% 
than sharing memory mechanism. 

 
The experiment demonstrates that, with our approach and 

the tool, the detailed energy consumption analysis of services 
and routines of EOS kernel can be performed, which enables 
optimizing applications and operating systems more 
efficiently. 

V. RELATED WORKS 
Tiwari [2] proposed the concept of software energy 

consumption and a method of instruction-level power 
modeling in 1994. The objective of software energy 
consumption research is to study the effects of software on 
energy consumption of processor and system by mapping 
hardware energy consumption to software structures and 
functionalities, and to support energy-aware software design.  
There have been several methods to estimate or evaluate 
software energy consumption. Tan et al. developed an energy 
simulator EMSIM [11]to estimate energy consumption of an 
embedded system software based on instruction-level energy 
model. Flinn et al. [12]and Acquaviva et al. [9]profile energy 
usage of mobile applications and embedded operating system 
in a wearable device, using hardware instrumentation to 
measure current level. This method needs high resolution 
instrumentation to measure energy consumption of overall 
embedded system. It is hard to identify the impact of 
individual services or routines of OS by this method. 

Most of the existing architectural level power simulators 
(e.g. Wattch[3], Power Analyzer[7]) provide cycle-accurate 
simulation of inner parts of the processors using detailed 
processor models. But they mainly focus on energy 
consumption estimation of user-level programs. It is hard for 
these architectural-level simulators to provide full-system 
simulation for OS execution and energy estimation. 

Analyzing and optimizing the energy consumption of OS 
and application running on it is another area wherein the 
characteristics of OS kernel energy consumption have been 
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examined. Tan et al. proposed a software architectural 
transformation approach [13]to reduce energy consumption 
of software. Fei et al. [14]improved this approach into a 
source code transformations approach. However, analysis of 
EOS energy consumption targeting the overall kernel services 
has not been sufficiently studied. 

VI. CONCLUSIONS 
In this paper, we propose a new approach of estimating 

and optimizing the energy consumption of embedded OS 
(EOS) at a finer granularity. In order to provide fine-grained 
energy estimation of an EOS, a new software energy 
estimation model is presented based on micro-architectural 
power model and EOS functionality and structural 
characteristics. We perform experiments on an Intel 
Strong-Arm architecture running embedded Linux 2.4.18, 
which demonstrates that the approach can identify energy 
consumption of fine-grained software components correctly 
and it can be used to optimize the energy consumption of an 
EOS and the applications running on it. 

The proposed approaches are not relied on a specific 
architecture or operating system thus can be used to build a 
new operating system energy consumption estimation 
platform if combined with a different instruction simulator 
and micro-architectural power model. 
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