

Abstract—Embedded operating systems (EOS) manage the
resources of the system and control device operations, and play
an important role on optimizing system energy consumption.
This paper proposes a new approach to estimate and optimize
the energy consumption of the EOS and the applications at a
fine-grained level. The approach is based on a
micro-architectural power model and a new estimation model
for operating system energy consumption. We apply the
approach to an Intel Strong-Arm architecture platform running
embedded Linux 2.4.18, analyzing its energy characteristics and
also trying to optimize energy of the applications on it based on
the analyzing results. The experiments demonstrate that the
approach can identify energy consumption of fine-grained
software components correctly and be used to optimize the
energy consumption of EOS and applications.

I. INTRODUCTION
ue to the severely limited energy supply and the growing
capability for executing resource-intensive tasks,

reducing the power dissipation of systems becomes a primary
design target for mobile computers and portable embedded
systems.[1-2]. In order to improve the energy efficiency of
the system, evaluating energy consumption of various
components in the system from the perspective of software is
very important.

Software energy consumption is defined as the energy
consumption of the system components while the programs
running on processor and during memory accesses. In order
to estimate energy consumption of EOS and applications
during the early design stage of embedded systems, software
energy consumption estimation techniques based on power
model and estimation model needs to be established
beforehand.

Recently, there are a lot of research on software energy
consumption model [3] and evaluation approach on
embedded systems [4-5] and user-level applications [6].
Detailed and fine-grained energy consumption characteristics
estimation and analysis of embedded operating system is
lacking.

In most of multi-tasks embedded operating systems,
system calls are application developers-perceived interfaces
of EOS. Besides system calls, there are many other kernel
services and routines running underlying the interface, such
as interrupt handlers, exception handlers, and schedule

This work was supported by the National High Technology Development

863 Program of China under Grant No. 2007AA010304 and No.
2007AA01Z462.

routines. These routines are invoked by random events that
are invisible from outside. It becomes difficult to estimate
energy consumption of EOS in a finer granularity using the
existing methods. Furthermore, it is much more difficult to
optimize EOS and applications energy consumption without
fine-grained energy estimation ability.

In this paper, we propose a new approach to estimate and
optimize the energy consumption of EOS and applications
efficiently. We propose a estimation model for operating
system energy consumption based on a micro-architectural
power model and EOS functionality and structural
characteristics. The proposed approach is able to estimate
energy consumption of system calls and kernel execution
path separately. The experiments demonstrate that the
approach can estimate energy consumption of fine-grained
software components correctly and be used to optimize the
energy consumption of an EOS and applications running on
it.

The remainder of the paper is organized as follows. Section
2 presents the proposed approach, including the fine-grained
EOS energy consumption estimation model. Section 3
describes experiment results. Section 4 shows an energy
optimization example. Section 5 reviews related work.
Finally, Section 6 concludes the paper.

II. FINE-GRAINED ENERGY ESTIMATION OF AN EOS

A. Overview
An overview of the proposed estimation framework is

illustrated in Fig. 1. Within the framework are three major
components: a full-system instruction level simulator
executing the OS and applications; a micro-architectural
power simulator estimating cycle-accurate power dissipation
of instructions, and a software energy analyzer integrating
multiple-granularity software energy consumption. The
inputs to the framework are an executable binary OS kernel
image file and a root file system involving user-level test
programs.

The full system instruction simulator simulates
functionalities of microprocessor and peripherally
components, and can run an unmodified embedded OS. It
outputs run-time instruction and address streams to the
micro-architectural power simulator through a message
queue. The micro-architectural power simulator simulates
operations of micro-architectural components of pipelines
and memory access. During instructions execution in the
pipeline, the simulator calculating per-cycle power

Fine-Grained Energy Estimation and Optimization of Embedded
Operating Systems

Xia Zhao 1, 2, Yao Guo 2, Hua Wang 2, Xiangqun Chen 2
1. College of Computer Science and Technology, Beijing Technology and Business University, Beijing 100037, China
2. Key laboratory of High Confidence Software Technologies (Ministry of Education), Institute of Software, School of

Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;

D

The 2008 International Conference on Embedded Software and Systems Symposia (ICESS2008)

978-0-7695-3288-2/08 $25.00 © 2008 IEEE

DOI 10.1109/ICESS.Symposia.2008.58

90

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

dissipation of micro-architectural components based on their
power model [6]. It sends cycle-accurate power consumption
of instructions and corresponding instruction addresses to
the software energy analyzer. The latter treats a run-time
operating system as a set of logical units consisting of
atomic functions, routines, services, and execution paths. It
builds run-time function call tree on the fly by analyzing
instruction-address sequence and symbol information of OS;
and then calculates multiple-granularity software energy
consumption of OS based on software energy
estimation-model.

The power model accounts for effects such as branch

delays, pipeline stalls, control-flow mispredictions, cache
misses, etc. It arranges the micro-architectural components
into four classes: datapath, cache, clock, and memory. The
power dissipation of datapath, cache and clock are estimated
based on the model proposed by Austin etc. [7]. The off-chip
memory system has different states during the execution of
the system, and the active state consumes major parts of the
energy. We use the current in active state to model the energy
consumption of the memory.

The energy consumption of an instruction flowing along
the pipeline is calculated by the following equation:

i datapath cache sram clock misce e e e e e= + + + + （1）
Where, datapathe is the energy dissipation of datapath in

pipelines, cachee is that of the Cache, srame is that of the TLB,

clocke is that of the clock circuits, and misce is the that of
miscellaneous logical units.

B. Fine-grained EOS energy consumption estimation model
To accurately estimate EOS energy consumption at a finer

granularity, we propose a new energy consumption
estimation model that treats the run-time EOS as a set of
logical units organized in hierarchy based on their
functionality and structural characteristics.

We define four types of units in EOS, namely atomic
function, routine, service, and execution path. An atomic
function is an atomic unit of EOS consisting of sequential
instructions, without invoking other functions. A routine is a
collection of instructions and atomic functions calling each
other. A service is a kind of special routine with special entry

and executes through the hardware trap mechanism. Services
can be divided into three classes: system call, exception
service and interrupt service. A kernel execution path
describes a process beginning with the first instruction in
kernel mode, and ending at the return instruction to user
mode, which is compose of routines and services.
1) Energy consumption of atomic functions

Energy consumed by an atomic function is defined as the
sum of per-cycle power dissipation of sequential instructions
belonging to the atomic function. The per-cycle power
dissipation is the sum of power dissipation of every processor
components in one cycle. In order to ensure the validity of the
function energy calculation by accumulating the per-cycle
power dissipation of instructions within an atomic function,
we exploit the combinability of the summarize operation by
pipeline simulation.

Another issue of atomic function energy estimation is to
determine whether an instruction belongs to a certain
function. We propose an approach of comparing instructions
address with function symbol information to identify
sub-function invocation and return. We set up a function
symbol table, and build run-time function call tree to identify
the complex program structure.

2) Energy consumption of routines and services
A routine can be represented as a runtime function call tree

consisting of functions with invocation relations among them.
The energy consumption of the routine is defined as the
energy consumption of the root node, noted as

0Routine fE E= ,
which is calculated by recursive aggregation of the energy
consumption of its sub-tree nodes. Given the routine’s
function call tree consisting of node 0 1 n, ,...,f f f , every node
denotes a function, 0f is the root node. Let

if
E is the energy

consumption of the function fi, if
I is the instruction set of this

function, j1 j2 jmf , f ,..., f (1 2 mi < j < j < ...< j < n) are its

sub-functions, and ie is the per-cycle energy consumption of
instructions; then, the energy consumption of any node on this
tree is the sum of energy consumption of its sub-function and
all instructions belong to this node directly, expressed as
follow:

k

m

k =1

 (has no sub-functions)

 (has sub-functions)

f i

i

f i

i i
i I

f

i f i k
i I

e f

E
e E f f

∈

∈


= 
 +


∑

∑ ∑
 (2)

The estimation algorithm of EOS routine and service
energy consumption is as Figure 2.

The energy estimation of a kernel service is similar as a
routine. The only difference is that kernel service has special
program entries, and needs to be identified among instruction
streams.
3) Energy consumption of execution paths

The existing energy estimation approaches [8-9] calculate
energy consumption of a system call with energy
consumption of the process from the first instruction into
kernel mode to the last instruction return to user mode. In fact,
they misestimated it by assigning the energy consumption

Micro-architecture
power model
& simulator

readelf

Instruction
&address trace

Full system
Instruction level

simulator
Executable image

file

Complier&ld

OS sourcce
code

Symbol info
table

… …
……

…
…

Instruction

address&
energy

OS-routine
energy

App.binary
code

Initrd.img

Root file
system

Software energy
analyzer

Micro-architecture
power model
& simulator

readelf

Instruction
&address trace

Full system
Instruction level

simulator
Executable image

file

Complier&ld

OS sourcce
code

Symbol info
table

… …
……

…
…

Symbol info
table

… …
……

…
…

… …
……

…
…

Instruction

address&
energy

OS-routine
energy

OS-routine
energy

App.binary
code

Initrd.img

Root file
system

Software energy
analyzer

Fig. 1. Overview of the proposed estimation approach

91

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

throughout the process as the energy consumption of the
system call.

In order to estimate and analyze the kernel energy

consumption accurately, we define this process as kernel
execution path, which including system call services and
other services. Therefore, kernel services are classified into
two types. An explicit service is defined as a system call
service which is invoked by user programs, and only consists
of routines implementing the system call function, such as
sys_read etc. An implicit service is defined as a kernel service
which is transparent to user programs, and has no direct
relations with the current execution, such as interrupt and
exception handlers.

Hence, we distinguish the system call service from system
call process. The frontier is an explicit service, while the latter
is a kernel execution path. Energy estimation of kernel
execution path can be done in two cases. 1) simple execution
path: This execution path is composed of a system call
service without interrupted, and its energy
consumption execpathE is the energy of the service serviceE . 2)
complex execution path: when the explicit service is
interrupted, the execution path is a forest of function call trees
including explicit services and implicit services throughout
the process. The energy of the path is the sum of energy of all
the sub-trees. The expression is as follow:

()

()

explict_service
execpath

explict_service implict_service Routine

E
E

E E E
= +

 simple execution path

+ complex executionpath
（3）

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
We implement an energy consumption estimation tool,

which simulates an embedded system featuring a StrongARM
micro-processor, and estimates the energy consumption of
the embedded operating system kernel ARMLinux 2.4.18.
The tool consists of an improved full system instruction
simulator based on Skyeye [10], an improved
micro-architectural power simulator [7] and a software
energy analyzer. Table 1 shows the configuration of the
micro-architectural model used for our experiments.

Some of our test programs come from real embedded
system application software, while others are designed to

exercise specific OS routines and services. Table 2 shows the
list of benchmarks used.

The output of the estimation tool is a hierarchical list of

function call trees with properties of routine on each tree
node. As shown in Figure 4, every property includes the
routine name and energy consumption calculated on
micro-architectural datapath and memory access separately.

A. Energy consumption of kernel routines and services

We classify the test programs into two categories:
interactive and non-interactive. From the data shown in Fig.
3, we observed the following characteristics of the kernel
energy consumption.

1) The percentage of energy consumption of processor

idle (arch_idle) in interactive applications is much higher
than that of in non-interactive applications. The former is
81% in overall energy consumption, while the latter is only
3%, because of the notable processor idle waiting time during

TABLE I
MICRO-ARCHITECTURE MODEL

Parameter Value
Feature Size 0.18um
Vdd 1.5V
Frequency 200MH
Fetch/Issue/Retire Width 2 (inorder)
RUU/LSQ size 4
L1 I-Cache 16KB (32B cache line, 2-way assoc.)
L1 D-Cache 8KB (32B cache line, 32-way assoc.)
TLB (full assoc) entries 32

TABLE Ⅱ
BENCHMARKS

Interactive programs Non-interactive programs

cat, ls, ln, echo, more, du rm, mount, cp, gzip, gunzip, tar
ifconfig, ftpget, telnet netstat

ps, whoami kill, chgrp,
Msg client, Shm client Msg server, Shm server, pipes

Eenergy consumption of services

0% 10% 20% 30% 40% 50% 60% 70% 80%

pabt_usr

dabt_usr

irq_svc

arch_idle

sys_write

sys_read

sys_call

Interactive

Non-interactive

Percentage of services invocation

0% 10% 20% 30% 40% 50%

pabt_usr

dabt_usr

irq_svc

arch_idle

sys_write

sys_read

sys_call

Interactive

Non-interactive

Fig.3. Distribution of Number and Energy Consumption of

Routines and Services

 Repeat:
Fetch the instructions address and energy from the buffer

queue;
Identify the function which the instruction belongs to;

assign the function name to variable func;
IF (is system call or exception entry) THEN new a tree;
Assign the current node to pointer variable cur_node;
IF (func equals cur_node) THEN
 Add the energy of the instruction to the current node,

CONTINUE;
Search the function tree which the instruction belongs to
IF (an node is found) THEN

Assign the current node to pointer variable pre_node;
Assign the found node to pointer variable cur_node;
Add the pre_node energy to cur_node;
CONTINUE;

New a tree, and assign new node to cur_node;

Fig.2. Pseudo Code of Estimation Algorithm of EOS Routine and
Service Energy Consumption

92

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

human-computer interaction.
2) The number of invocation and energy consumption of

system calls (sys_xxx) in two scenarios are quite different. In
the interactive scenario, the number of system calls makes up
37% of overall kernel invocations, which is 17% higher than
in non-interactive applications. However, the energy
consumption of the former is only 8%, 34% lower than the
latter’s.

3) The number and energy consumption of exception
(page fault exception and prefetch exception) handling
archive a significant proportion to overall kernel energy
consumption in both scenarios. The explanation for this is
that on the StrongARM platform, ARMLinux kernel manages
the memory with virtual memory technology, which loads
codes and data of the process into memory through
on-demand paging and prefetch paging mechanisms.

It can be concluded that processor idle is one of main
sources of energy consumption in interactive system, while
the system calls and exception handling are major sources of
energy consumption in non-interactive system. So
optimization of these kernel routines and services is one way
to reduce energy consumption of EOS.

B. Functionality vs. energy consumption of routines and
services

The experiment results indicate that energy consumption of
kernel routine/service is directly related to the complexity of
its functionality. Table 3 gives the results of statistic of energy
consumption of some kernel routines/services.

1) The routines with simple functionalities have low and

stable energy consumption. The mean of energy consumption
of the ID operation routines, such as sys_gerpid, is not more
than 5uJ. The standard deviation of these routines is not more
than 2.

2) The kernel routines/services with remarkable energy
consumption should be given more attentions. For example,
sys_fork is used to create new process, it energy consumption
is 89.40uJ, which is higher than that of sys_clone, which is
used to create new thread in the same process. If we can use
sys_clone instead of sys_fork to perform concurrent

operations, we can reduce the cost of time, memory and
energy consumption.

3) The energy consumption of complex services and kernel
execution paths are quite different in different scenarios. As
shown by Figure 4, the different kernel execution paths with
the same system call have distinct function call tree and
energy consumption under different conditions.

C. Energy consumption of system calls
In a multi-tasks concurrent operating system, with implicit

services in kernel execution path, some system calls are
different from system call processes, and the energy
consumptions of them are very different.

As shown in Table 4, sys_read system call process has

three types of kernel execution paths under different cases.
The first case is performing tty_read to read a user input from
keyboard which has some implicit services. The energy
consumption of sys_read system call process is 1705uJ, while
the energy consumption of sys_read system call is just 41uJ,
holding not more than 3% of that in total process. The second
case is performing generic_file_read to read a file from the
storage and the energy is 123 uJ. The implicit services
dabt_handler are invocated to load the file from flash device
to memory. The third case is performing generic_file_read to
read some data existing in memory and the energy is 40uJ.
The energy consumptions of system call and system call
process are the same, because no implicit services are
invoked.

The results demonstrate that the implicit services have
significant impact on the energy estimation of OS system

 sys_read(micro:17.005,mem:0.000)
fget(micro: 8.527,mem:0.000)
generic_file_read(micro: 3.336,mem:0.000)

do_generic_file_read(micro:2.854,mem:0.000)
update_atime(micro:1.534,mem:0.000,)

fput(micro: 1.130,mem:0.000)
)
 (a) Energy consumption of sys_read in execution path of generic_file_read

 sys_read(micro:17756.991,mem:0.000,

 fget(micro:3.058,mem:0.000,)
 tty_read(micro:17750.125,mem:0.000,
 read_chan(micro:17749.156,mem:0.000,

 ...
schedule(micro:2.124,mem:0.000,

__switch_to(micro:1.200,mem:0.000,)
cpu_idle(micro: 17720.347,mem:0.000,)
__irq_svc(micro: 31.609,mem:0.000,

 fput(micro: 1.132,mem:0.000)
)
(b) Energy consumption of sys_read in execution path of tty_read

Fig.4. Energy Consumption of Different Execution Paths

TABLE Ⅳ
ENERGY CONSUMPTION OF DIFFERENT PATHS（UJ）

OS service name tty_read
generic_file_read
（from storage）

generic_file_read（
from memory）

Execution 1705 123 40
Explicit 41 78 40
interrupt 130 45 0
schedule 10 0 0

Idle process 1476 0 0

Timer interrupt 48 0 0
Proportion of

Explicit services 2.46% 63.41% 100%

TABLE Ⅲ
ENERGY CONSUMPTION OF SOME ROUTINES AND SERVICES

Name Counts of
executions Energy consumption（uJ）

 Means Min Max Std.
sys_getegid 25 4.99 3.52 9.51 1.70
sys_getgid 20 2.17 1.95 2.71 0.18
sys_getpid 19 1.55 0.20 2.17 0.41

__switch_to 110 1.24 1.08 1.78 0.16
__wake_up 427 2.78 0.20 5.97 0.77

sys_brk 147 12.21 4.45 29.60 7.00
sys_fork 24 89.40 73.10 113.73 11.04

sys_execv 24 453.31 372.00 1219.60 164.83
sys_exit 21 138.34 115.81 188.5 19.09

sys_clone 6 43.88 25.18 72.39 16.24
sys_open 44 71.63 29.2 445.94 62.105
sys_write 291 80.97 38.72 204.94 32.71
sys_read 266 44.74 8.1 355 40.78
sys_close 66 78.44 8.02 330.58 93.59

__dabt_svc 39 46.04 32.98 165.15 20.53
__pabt_user 1211 34.27 191.27 402.69 37.36
__irq_svc 244 34.12 9.5 86.57 12.41

93

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

calls and applications. With the approach proposed by this
paper, we can distinguish energy consumption of a system
call from a execution path based on the fine-grained energy
consumption information, and can identify key factors of the
EOS energy consumption for software energy consumption
optimization.

IV. ENERGY OPTIMIZATION IN AN EOS
Based on the above analysis, we show how to optimize an

Inter-Processes Communication (IPC) mechanism selection
for given programs to reduce energy consumption. The basic
objective of optimization is to select energy efficient IPC
and minimize the number of IPC, reducing intervention of
underlying OS services. The optimization has following
properties:

1） The functionalities of applications remain the same as
before;

2） The total volume of IPC messages passed between the
two processes remains the same as before;

Consider two chat programs implemented on a
multi-processes EOS. As shown in Figure 5, the chat
programs consist of two processes, server and client. The
client process reads string inputting by user, and passes the
string to the server process that is waiting on another IPC end.
The server receives the string and displays it. Three different
IPC mechanisms, namely pipe, message queue and sharing
memory are implemented respectively. The functionality and
the communicated data are the same in each IPC mechanism.

Energy consumptions of three IPC mechanisms in the chat

programs are quite different. As shown in Figure 6, message
queue tends to be more energy-efficient compared to pipe and
sharing memory. Based on the analysis of energy
consumption of these IPC mechanisms, we select message
queue to implement the data communication in the chat
programs. As shown in Fig. 6(b), Energy consumption of
message queue mechanism during one time execution of the
chat programs is only 2.7mJ, that of pipe mechanism is
6.8mJ, and that of share memory mechanism is 12.9mJ.
Hence, the message queue mechanism can reducing
59%energy consumption than pipe mechanism, and 78%
than sharing memory mechanism.

The experiment demonstrates that, with our approach and

the tool, the detailed energy consumption analysis of services
and routines of EOS kernel can be performed, which enables
optimizing applications and operating systems more
efficiently.

V. RELATED WORKS
Tiwari [2] proposed the concept of software energy

consumption and a method of instruction-level power
modeling in 1994. The objective of software energy
consumption research is to study the effects of software on
energy consumption of processor and system by mapping
hardware energy consumption to software structures and
functionalities, and to support energy-aware software design.
There have been several methods to estimate or evaluate
software energy consumption. Tan et al. developed an energy
simulator EMSIM [11]to estimate energy consumption of an
embedded system software based on instruction-level energy
model. Flinn et al. [12]and Acquaviva et al. [9]profile energy
usage of mobile applications and embedded operating system
in a wearable device, using hardware instrumentation to
measure current level. This method needs high resolution
instrumentation to measure energy consumption of overall
embedded system. It is hard to identify the impact of
individual services or routines of OS by this method.

Most of the existing architectural level power simulators
(e.g. Wattch[3], Power Analyzer[7]) provide cycle-accurate
simulation of inner parts of the processors using detailed
processor models. But they mainly focus on energy
consumption estimation of user-level programs. It is hard for
these architectural-level simulators to provide full-system
simulation for OS execution and energy estimation.

Analyzing and optimizing the energy consumption of OS
and application running on it is another area wherein the
characteristics of OS kernel energy consumption have been

read
data

send
data

read
data

send
data

read
data

send
data

receive
data

display
data

receive
data

display
data

receive
data

display
data

IPC IPC IPC

Client

Server

t

t

read
data

send
data

read
data

send
data

read
data

send
data

receive
data

display
data

receive
data

display
data

receive
data

display
data

IPC IPC IPC

Client

Server

t

t

Fig.5. The server and client of the chat programs

do_pipe
pipe_write
pipe_read
sys_close

--
sys_msgget
sys_msgrcv

sys_msgsnd
sys_msgctl

--
sys_shmget

do_shmat
sys_shmdt
sys_shmctl

--

0 1 2 3 4 5

Energy Consumption (mJ)

 ShareMemory
 MessageQueue
 Pipe

(a)

P ipe M essa geQ ueu e S ha reM em o ry
0

2

4

6

8

1 0

1 2

1 4

2 .9
4 .91 .6

6 .8
7 .3

1 2 .9

2 .7

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

 C re ate H a nd le r
 D ata C o m m un ica tio n
 C on tro l& F re e

2 .9

(b)

Fig.6. Energy Consumption optimization of IPC mechanisms

94

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

examined. Tan et al. proposed a software architectural
transformation approach [13]to reduce energy consumption
of software. Fei et al. [14]improved this approach into a
source code transformations approach. However, analysis of
EOS energy consumption targeting the overall kernel services
has not been sufficiently studied.

VI. CONCLUSIONS
In this paper, we propose a new approach of estimating

and optimizing the energy consumption of embedded OS
(EOS) at a finer granularity. In order to provide fine-grained
energy estimation of an EOS, a new software energy
estimation model is presented based on micro-architectural
power model and EOS functionality and structural
characteristics. We perform experiments on an Intel
Strong-Arm architecture running embedded Linux 2.4.18,
which demonstrates that the approach can identify energy
consumption of fine-grained software components correctly
and it can be used to optimize the energy consumption of an
EOS and the applications running on it.

The proposed approaches are not relied on a specific
architecture or operating system thus can be used to build a
new operating system energy consumption estimation
platform if combined with a different instruction simulator
and micro-architectural power model.

REFERENCES
[1] T. K. Tan, A. Raghunathan and N. Jha, "Embedded Operating
System Energy Analysis and Macro-modeling," in Proc.
Proceedings of the International Conference on Computer Design,
2002. pp. 517-522.
 [2] V. Tiwari, S. Malik and A. Wolfe, "Power analysis of embedded

software: A first step towards software power minimization,"
IEEE Transactions on Very Large Scale Integration, vol.2(4),
1994, pp. 437-444.

 [3] D. Brooks, V. Tiwari and M. Martonosi, "Wattch: A
framework for architectural-level power analysis and
optimizations," in Proc. 27th Annual International Symposium on
Computer Architecture, 2000.

 [4] K. Chandra and G. Selim, "A run-time, feedback-based energy
estimation model For embedded devices," in Proc. Proceedings
of the 4th international conference Hardware/software codesign
and system synthesis, Seoul, Korea: , 2006.

 [5] A. Dunkels, F. sterlind, N. Tsiftes and Z. He, "Software-based
On-line Energy Estimation for Sensor Nodes," in Proc. In
Proceedings of the Fourth Workshop on Embedded Networked
Sensors (Emnets IV),, Cork, Ireland: ACM Press, 2007. pp. 23-27.

 [6] T. Li and L. K. John, "Operating System Power Minimization
through Run-time Processor Resource Adaptation," Journal of
Microprocessors and Microsystems, vol.30(4), IPC Science and
Technology Press, 2006, pp. 173-224.

 [7] H. Angus, "A Survey of Economic Problems Awaiting
Investigation in British Columbia," Contributions to Canadian
Economics, vol.2(, 1929, pp. 45-51.

 [8] R. P. Dick, G. Lakshminarayana, A. Raghunathan and N. K.
Jha, "Power Analysis of Embedded Operating Systems," in Proc.
Proceedings of the 37th conference on Design automation, Los
Alamitos, California: Ieee computer society Press, 2000. pp.
312-315.

 [9] A. Acquaviva, L. Benini and B. Ricco, "Energy

Characterization of Embedded Real-Time Operating Systems," in
Proc. Workshop on Compilers and Operating Systems for Low
Power, COLP'01, 2001. pp. 13-18.

[10] Y. Chen, The Analysis and Practice on Open Source
Embedded System Software--Based on SkyEye and ARM
Developing Platform., Beijing: Beihang University Press, 2004.

[11] M. Gottdiener, "Some Limits to the Parsons Revival: Comment
on Sciulli," American Journal of Sociology, vol.91(3), 1985, pp.
674-677.

[12] J. Flinn and M. Satyanarayanan, "PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications.," in Proc.
Proceedings of the Second IEEE Workshop on Mobile Computer
Systems and Applications, 1999. pp. 2-10.

[13] T. K. Tan, A. Raghunathan and N. K. Jha, "software
architecture transformations：A New Approach to Low Energy
Embedded Software," in Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE'03), 2003. pp. 11046.

[14] Y. Fei, S. Ravi, A. Raghunathan and N. K. Jha,
"Energy-Optimizing Source Code Transformations for OS-driven
Embedded Software," in Proc. Proceedings of the 17th
International Conference on VLSI Design (VLSID’04), 2004.

95

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 01:15 from IEEE Xplore. Restrictions apply.

