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Abstract
The EOSIO blockchain, one of the representative Delegated
Proof-of-Stake (DPoS) blockchain platforms, has grown
rapidly recently. Meanwhile, a number of vulnerabilities and
high-profile attacks against top EOSIO DApps and their smart
contracts have also been discovered and observed in the wild,
resulting in serious financial damages. Most of the EOSIO
smart contracts are not open-sourced and typically compiled
to WebAssembly (Wasm) bytecode, thus making it challeng-
ing to analyze and detect the presence of possible vulnera-
bilities. In this paper, we propose EOSAFE, the first static
analysis framework that can be used to automatically detect
vulnerabilities in EOSIO smart contracts at the bytecode level.
Our framework includes a practical symbolic execution en-
gine for Wasm, a customized library emulator for EOSIO
smart contracts, and four heuristic-driven detectors to identify
the presence of the four most popular vulnerabilities in EO-
SIO smart contracts. Experiments have shown that EOSAFE
achieves promising results in detecting vulnerabilities, with
an F1-measure of 98%. We have applied EOSAFE to all active
53,666 smart contracts in the ecosystem (as of November 15,
2019). Our results show that over 25% of the smart contracts
are labeled vulnerable. We further analyze possible exploita-
tion attempts on these vulnerable smart contracts and identify
48 in-the-wild attacks (27 of them have been confirmed by
DApp developers), which have resulted in financial loss of at
least 1.7 million USD.

1 Introduction
With the growing prosperity of cryptocurrencies (e.g., Bit-
coin), blockchain techniques have become more attractive and
been adopted in a number of areas. Due to the limited through-
put (e.g., Transaction Per Second, aka TPS) derived from the
inherent principle of the Proof-of-Work consensus, traditional
blockchain platforms (e.g., Bitcoin and Ethereum) cannot be
used to support high performance applications. Researchers
have proposed different consensus protocols, e.g., Proof-of-
Stack (PoS) [1] and Delegated Proof-of-Stake (DPoS) [2], to
resolve the performance issues.

As one of the most representative DPoS platforms and
the first decentralized operating system, EOSIO has become
one of the most active global communities. EOSIO adopts
a multi-threaded mechanism based on its DPoS consensus
protocol, which is capable of achieving millions of TPS. The
performance advantage of EOSIO makes it popular for De-
centralized Application (DApp) developers. EOSIO has suc-
cessfully surpassed Ethereum in DApp transactions just three
months after its launch in June 2018 [3]. Currently, the trans-
action volume of EOSIO on average is more than a hundred
times greater than Ethereum [4]. As of 2019, the total value of
on-chain transactions of EOSIO has reached over $ 6 billion.

A smart contract is a computer protocol that allows users
to digitally negotiate an agreement in a convenient and secure
way. In contrast to the traditional contract law, the transaction
costs of a smart contract are dramatically reduced, and the cor-
rectness of its execution is ensured by the consensus protocol.
EOSIO smart contracts can be written in C++, which will be
compiled to WebAssembly (Wasm) and executed in the EOS
Virtual Machine (EOS VM). Wasm is a web standard specify-
ing the binary instruction format for a stack-based VM. It can
run in modern web browsers and other environments [5].

However, it is not easy to guarantee the security of the
implementation of smart contracts, EOSIO in particular. A
number of vulnerabilities have been discovered in EOSIO
smart contracts, while severe attacks have been observed in
the wild, which caused great financial damages. For instance,
in fall 2018, a gambling DApp, EOSBet, was attacked twice
within just a month [6, 7] due to fake EOS and fake receipt
vulnerabilities, causing 40,000 and 65,000 EOS losses, re-
spectively. Therefore, it is necessary to identify the security
issues of smart contracts in order to prevent such attacks.

Unfortunately, most smart contracts on EOSIO are not
open-sourced, and there are few analysis tools towards an-
alyzing Wasm bytecode, which makes it more difficult to
detect vulnerabilities for EOSIO smart contracts automati-
cally. As Wasm bytecode can be converted to C code using
the official tool wasm2c [8], which naturally provides a poten-
tially promising approach that analyzes the converted C code



rather than raw Wasm bytecode, so we can apply widely used
tools such as KLEE [9]. However, our investigation shows
that such a solution is not practical, i.e., KLEE failed to per-
form the detection in most cases, due to reasons including
timeout and out-of-memory (OOM) issues caused by path
explosion. This can be possibly explained by the adopted
memory model [10,11] which may lead to heavy memory and
time consumption, as reported by [12]. Furthermore, the con-
version from Wasm bytecode to C code requires extra human
efforts to prepare all exported functions (including function
signatures and the logic) for EOSIO smart contracts. Oth-
erwise, the compilation and the symbolic execution cannot
be successfully completed. Moreover, the quality of the con-
verted C code cannot be guaranteed, because wasm2c itself
is still under development and may not be stable considering
the bugs that have been discovered so far [13]. In short, the
C language based solutions rely on sophisticated conversion
tool(s), so they are typically too heavy to perform the analysis
for EOSIO smart contracts (see §7.1).

As such, this paper attempts to analyze Wasm bytecode
directly to detect vulnerabilities in EOSIO smart contracts.
Although many efforts have been made to analyze Ethereum
smart contracts [14–19], none of them, however, can be ap-
plied to EOSIO smart contracts, as these two ecosystems are
totally different, ranging from their virtual machines, the struc-
ture of bytecode, to the types of vulnerabilities. Specifically,
there exist several challenges. Firstly, EOS VM is more com-
plicated than Ethereum VM in regard to their instructions,
including both quantity and variety. For example, EOS VM
supports floating point operations, type conversion and ad-
vanced jump instructions [20], none of these features are sup-
ported in Ethereum VM at the opcode level [21,22]. Secondly,
although with a well-structured format, the Wasm bytecode
is complicated to analyze due to the multi-level nested struc-
tures, which makes it difficult to perform the semantic-level
recovery for further analysis/detection. Thirdly, most EOSIO
vulnerabilities discovered so far are more complicated than
traditional simple vulnerabilities, e.g., integer overflow. Thus
it usually requires more semantic information, e.g., fields of
the platform-specific data structure as the indexes, to model
and analyze them. For example, to detect the fake EOS vul-
nerability (see § 3.1), we need to check the specific value of
the argument code in the function apply.

This Paper. We implement EOSAFE, the first systematic
static analysis framework for detecting vulnerabilities in EO-
SIO smart contracts. Specifically, we first implement a native
symbolic execution engine for Wasm bytecode, and mitigate
the inherent path explosion problem by applying a heuristic-
guided pruning approach. Second, to analyze an EOSIO smart
contract and simulate its external interactive environment, we
implement an emulator to mimic the behaviors of key EOSIO
library functions that are crucial in vulnerability detection.
Third, we propose a generic vulnerability detection frame-
work, which allows security analysts to easily implement their

own vulnerability detectors as plugins. In this work, we have
implemented four detectors aiming to detect four high-profile
vulnerabilities, including fake EOS, fake receipt, rollback and
missing permission check (see §3).

To evaluate the effectiveness of EOSAFE, we first manually
crafted a benchmark suite including 52 smart contracts, which
is composed of vulnerable smart contracts collected from pub-
licly verified attacks and their corresponding patched ones.
Experimental results and further manual verification suggest
that EOSAFE achieves excellent performance in identifying
existing vulnerabilities. To measure the overall landscape of
vulnerabilities in the EOSIO ecosystem, we further applied
EOSAFE to all the smart contracts in the ecosystem (53,666
in total). Experiment results reveal that security vulnerabili-
ties are prevalent: over 25% of the smart contracts (including
historical versions) are flagged as vulnerable, and a large por-
tion of them have not been patched timely. To further measure
the impact of these vulnerabilities, we collect the transaction
records (over 2.5 billion transactions in total), and design a
set of conservative heuristic strategies to identify attacks tar-
geting these vulnerable smart contracts. We have identified
48 attacks in total, as well as 183 missing permission check
actions. By the time of this writing, 27 attacks have been
confirmed by DApp developers, which have already caused
the financial loss of over 1.7 million USD.

This paper makes the following main contributions:
• We propose EOSAFE, the first systematic static analysis

framework for EOSIO smart contracts, which is capa-
ble of detecting four kinds of popular vulnerabilities.
Experiment results demonstrate that EOSAFE achieves
excellent performance.

• We propose a valuable-function-centric detection frame-
work, which is based on our observed vulnerability-
specific pruning strategies, to effectively mitigate the
path explosion issue in symbolic execution.

• We apply EOSAFE to over 53K EOSIO smart contracts,
and perform the first measurement study of the whole
EOSIO ecosystem. Our results reveal the severity of the
security issues, i.e., over 25% of the EOSIO smart con-
tracts may have been exposed to the threats introduced
by these vulnerabilities.

• We have identified 48 attacks (35 of them were first dis-
covered) and 183 missing permission check actions re-
lated to the identified vulnerabilities, which have caused
huge financial loss. Most of the severe attacks have been
confirmed by DApp Teams.

To boost further research on EOSIO smart contracts, we
have released the benchmark and experiment results to the
research community at [23].

2 Background
As the first industrial-scale decentralized operating sys-
tem [24], the EOSIO platform can achieve high perfor-
mance, i.e., millions of TPS, to efficiently execute complicated



DApps. Such efficiency is in large part due to the consensus
algorithm it uses, i.e., DPoS, which does not spend a vast
amount of computing resources on the unnecessary mining
process compared to traditional PoW. We next introduce some
key concepts to facilitate the understanding of this work.

2.1 Account Management
An account in EOSIO is the basic unit to identify an entity.
It can trigger transactions to other accounts. Additionally, to
ensure account security and prevent identity fraud, EOSIO
implements an advanced permission-based access control
system. Specifically, an account can assign public/private keys
to specific actions, and a particular key pair will only be able
to execute the corresponding action. By default, an EOSIO
account is attached to two public keys: the owner key (which
specifies the ownership of the account) and the active key
(which grants access to activities with the account). These
two keys authorize two native named permissions: the owner
and active permission, to manage accounts. Apart from the
native permissions, EOSIO also allows customized named
permissions for advanced account management.

1 void apply(uint64_t receiver , uint64_t code ,
uint64_t action) {

2 if(action == N(onerror)) {
3 check(code == N(eosio), "exception captured");
4 }
5 auto self = receiver;
6 if((code == self || code == N(eosio.token))) {
7 switch(action) {
8 case N(transfer): // action == N(transfer)
9 // deal with:

10 // 1. direct invocation to transfer function
11 // 2. notification emitted from transfer
12 ...
13 }
14 }
15 }

Listing 1: An example of the apply function with slight
modification for better readability. The function N is used
to retrieve the string literal.

Unlike Ethereum, an EOSIO smart contract is not treated
as a separate entity. A smart contract is just a snippet of
code stored in an account, which makes it easy to explain
why a smart contract in EOSIO is updatable, rather than an
Ethereum smart contract that cannot be changed freely by
the owner. Therefore, when an account is invoked by another
one, its smart contract will be responsible for handling the
received invocation. In this way, it requires a dispatcher to
dispatch the requests to the corresponding functions. Specif-
ically, in EOSIO, this dispatcher is officially defined as a
function named apply with a fixed function signature1, as
the example shown in Listing 1. As the entry point of each
EOSIO smart contract, the apply function is responsible for

1The two terms, i.e., the dispatcher and the apply function, will be used
interchangeably in the following.

handling all the requests, including invoked actions and re-
ceived notifications (see §2.2), which will be forwarded to
the corresponding processing functions. Besides, the apply
function can be used to validate the input parameters if neces-
sary. The details of the parameters and the mechanism of the
apply function will be discussed in §2.2.

2.2 EOSIO Transactions

A transaction is the basic unit to be verified and packaged in
blocks. Moreover, a transaction is composed of one or multi-
ple actions, and an action is the basic unit to trigger functions.
For example, the action in Listing 1 (line 1) specifies the
target function name. The action is responsible for carrying
permissions designated by the invoker. Moreover, another
nested action can be triggered by send_inline as an inlined
actions2, which is still an ordinary action and inherits the con-
text (including permissions) of its parent. Note that a failure
in an action could lead to the revert of the whole transaction.

Besides transaction and action, there exists another exclu-
sive mechanism named notification. Specifically, it is used to
notify a target account of the current action being executed, in-
dicating the name of the function that initiates the notification
(let fn be the function name). After that, the notified account
has to process the notification by triggering the function with
the same name fn through the dispatcher.

Figure 1 provides a concrete example to illustrate the mech-
anism of the apply function (Listing 1). It is known that EOS
is the official token issued by the account eosio.token, who
maintains a table to record the holders and their balances.
Thus, to transfer EOS to a DApp, a user has to request the
transfer function in eosio.token. In step 1 shown in Fig-
ure 1, the code is assigned the value “eosio.token”, which
indicates the account whose smart contract will be invoked;
similarly, the receiver is also set to “eosio.token”, which
represents the receiver of the action (or the notification). After
updating the balance table, eosio.token will notify both payer
(step 2) and payee (step 3). Note that the code in both steps re-
main unchanged, as the notification will not change the values.
However, the receivers are set to the corresponding partic-
ipants, i.e., account user and account dappeg1, respectively.
Finally, the processing of incoming notifications depends on
the type of the recipient account. To be specific, if it is a smart
contract, the notification will be handled by the transfer
function through the dispatcher (step 4); otherwise, if it is a
normal account, the notification will be simply dropped.

Note that functions we studied in this paper can be divided
into two categories. The first category includes functions
that are declared by the official accounts, e.g., the transfer
function in eosio.token. The second category consists of those
declared and implemented by developers. For instance, to
achieve the revealing logic in gambling DApps, developers

2EOSIO also provides deferred action, which will be executed in a differ-
ent transaction.
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Figure 2: The general life-cycle of smart contract execution.
Note that “reveal” here is used to represent the processing
logic, while the name can vary in different smart contracts.

could arbitrarily name and implement their reveal functions
(see Figure 2, which will be detailed in §3).

2.3 Wasm Bytecode and EOS VM

The EOSIO smart contracts are written in C++ and then com-
piled into Wasm bytecode, which will be executed in the EOS
VM. Wasm is a binary instruction format for a stack-based
virtual machine. Although it is designed to be an open stan-
dard to enable high-performance web applications, it can also
be used to support other environments. Due to its efficiency
and portability, besides EOSIO, other popular blockchains
(e.g., Ethereum 2.0 [25]) are going to support Wasm.

An EOSIO Wasm binary is called a module. Inside a mod-
ule, numerous sections exist. Specifically, in the Function
section, the order of functions is determined, which corre-
sponds to the order of the implementation of functions (in
low-level instructions) in the Code section. All the indexes of
functions that appear in the Element section can be treated as
entries. Additionally, string literals are often used to initialize
the Memory section and stored in the Data section.

In the EOS VM, all the operands and operators are pushed
and popped from a virtual Stack as done in the Ethereum
VM. However, two more particular structures are used to store
data in the EOS VM, i.e., Local and Global. Specifically,
data stored in the Local section can only be used inside the
scope of the current function, while data stored in the Global
section can be shared globally across functions. Also, EOS
VM has an area called Memory, a random-accessible linear
array of bytes, which can only be accessed by using specific
instructions, e.g., load and store.

2.4 Threat Model

In this section, we introduce the adversarial threat model of
this paper. Specifically, the adversary (attacker) in our study

does not require any privileges to launch attacks against EO-
SIO smart contracts. Namely, any non-privileged account that
is capable of interacting with the (up-to-date) deployed EO-
SIO smart contracts, can be used to launch the attacks. Note
that, by default, the adversary can invoke any smart contract
deployed by herself to automatically launch the attacks.

3 Vulnerabilities in EOSIO Smart Contracts
A number of attacks targeting the EOSIO ecosystem (includ-
ing smart contracts) have been observed in the wild, and some
of them have been reported [26, 27]. In this paper, we focus
on four representative loopholes relevant to EOSIO smart con-
tracts, including fake EOS (§3.1), fake receipt (§3.2), rollback
(§3.3) and missing permission check (§3.4).

Before delving into the details, we introduce the general
life cycle of a smart contract execution to facilitate further
discussion. Here we take a gambling DApp as an example, as
depicted in Figure 2. Firstly, the player invokes the transfer
function in eosio.token to take part in the game. Then, on
receiving the notification, the DApp will dispatch the request
to transfer through the dispatcher. After that, transfer
will call the reveal function (Note that “reveal” here is just
used to represent the processing logic, and the real function
names may be varied in different smart contracts.) to calculate
a random number to determine if the player hits the jackpot
this round. If it does, the DApp will trigger transfer in
eosio.token to return the prize to the player. Unfortunately,
the attackers can exploit the vulnerabilities in each step to
gain profit. For example, in steps 3 and 4, failing to rigorously
verify the values of the input parameters could be exploited
by attackers. On top of that, this whole betting and revealing
process has the potential to be maliciously rolled back.

3.1 Fake EOS
Anyone can create and issue a token called EOS, as the token
names and symbols are not required to be unique in EOSIO.
Therefore, the incorrect verification for code at step 3 in Fig-
ure 2 may lead to vulnerabilities.

Vulnerability Description. As the source code of eo-
sio.token is entirely public, anyone can make a copy of its
source code and issue a token with the identical name and
symbol. However, due to the difference between issuers, if
an attacker transfers the fake EOS to a gambling DApp via
the transfer function of the copied contract, the code of the
notification received by the DApp side will not be eosio.token.
Thus, if the DApp happens not to check the value of the code,
then the verification in the dispatcher will be bypassed.

To mitigate the above issue, some developers narrow down
the scope of accepted code. As shown in line 6 of Listing 1,
either “self” or “eosio.token” can be taken as the valid input
value of code. However, such a mitigation can also be by-
passed if the attacker directly calls the transfer function.
As the condition “code == self” will always be satisfied (see



§2.2), due to the short-circuit evaluation [28] on line 6, the
transfer function will be invoked even there is no notifica-
tion from eosio.token, which indicates a transferring request.

As these two cases are only related to fake EOS tokens, in
this work, we name both of them as fake EOS vulnerabilities.

3.2 Fake Receipt
If the DApp developer performs a comprehensive check
against the code, the notification will then be forwarded by
the dispatcher to transfer, as shown in step 4 in Figure 2.
However, if the developer does not perform a verification in
this step, the DApp can also be attacked.

Vulnerability Description. It is necessary to emphasize
that the notification can be forwarded, and the code will not
change. Therefore, DApp might be deceived by the attacker
that plays the dual roles (accounts) of an initiator and an ac-
complice at the same time. To be specific, the initiator invokes
a regular transfer to an accomplice (indicated by to, the argu-
ment of the transfer function) through eosio.token. When
the accomplice is notified by eosio.token, it will immediately
forward the notification to DApp without modification. In this
way, the code is not changed, which is still the official issuer:
eosio.token. Therefore, the dispatcher will be unaware of any
anomalies. However, if the parameter to is not checked in
transfer, the DApp will be fooled as the token transfer is
completed between two accounts controlled by the attacker.
It may result in direct financial loss for DApp developers.

As the notification is triggered by require_recipient,
we name this vulnerability as fake receipt .

3.3 Rollback
In Figure 2, transfer and reveal3 are the key functions. In
the transfer function, DApp handles the bet that is received
along with the player’s transfer; in the reveal function, the
developer often uses various on-chain state as seeds (e.g.,
current_time, indicating the timestamp when the action is
executed) to generate a pseudo-random number4 and finally
obtains the result by comparing the generated number with the
player’s input via the modulo operation, which is achieved by
the rem operator in Wasm bytecode [29]. Note that, in general,
the rollback cases can only be found in gambling DApps. We
assume it is always there and reachable from the dispatcher.

Vulnerability Description. Even if the developer does a
thorough check on every input parameter and checks the
caller’s permissions before any sensitive actions, a game that
matches the model in Figure 2 may still be attacked. To be spe-
cific, all the actions are invoked inline (see §2.2), i.e., locating
in a single transaction. Therefore, when the player receives
the notification after step 8, he could immediately invoke an-
other inlined action to eosio.token to check his balance. If his

3The “reveal” refers to the semantic meaning as we explained in §2.2
4The “pseudo” is due to all these seeds value are deterministic for lack of

a true randomness source on blockchain temporarily.

balance is reduced, which means he did not win this round,
he can use an assertion statement to force the current action
to fail. We have mentioned in §2.2 that the failure of an action
could lead to reverse of the whole transaction. To this end, the
player can keep trying until he hits the jackpot. We refer to
this malicious rollback as the rollback vulnerability.

3.4 Missing Permission Check
Before performing any sensitive operation, the developer
should check whether the corresponding permission is carried
by the action. For example, before step 5 in Figure 2, the
DApp should check whether the caller could represent the
actual payer to participate in the game.

Vulnerability Description. Permission checking is en-
forced by require_auth(acct) in EOSIO, which is used to
check whether the caller has been authorized by acct to trig-
ger the corresponding function. Note that the inlined actions
inherit the context of their parents, including the permissions
(see §2.2). Therefore, if an attacker carrying insufficient per-
mission invokes a function, in which it performs sensitive
operations via inlined actions and without permission check-
ing, unexpected behaviors would happen. We regard all the
functions lacking of permission checking as the smart con-
tracts with the missing permission check vulnerability.

3.5 The Generality of These Vulnerabilities
Note that these four vulnerabilities we studied are general
vulnerabilities in EOSIO, rather than application-specific.
Firstly, the fake EOS and fake receipt vulnerabilities impact
the smart contracts with the verification of transferring re-
quests. All the transferring requests in EOSIO, however, have
to be processed by the transfer function that is limited
by the notification mechanism in EOSIO. According to our
statistics (see Table 3 in §7.2), there are 88.32% of deployed
contracts using the transfer function. In other words, almost
90% of smart contracts can be influenced by these two vul-
nerabilities. Secondly, though the rollback vulnerability only
affects the gambling DApps due to the mechanism they adopt
(see §3.3), they constitute the most popular DApp category of
EOSIO according to [30, 31]. Therefore, the detection of roll-
back vulnerability applies to a large portion of existing active
DApps. Lastly, the missing permission check vulnerability
may impact all the deployed smart contracts without care-
fully verifying permissions, which may lead to unexpected
database modification or leakage of sensitive information. We
will further measure the proportion of smart contract may be
affected by the vulnerabilities in §7.2.

4 Technical Challenges and Our Solutions
We aim to design and implement a static analysis system to
detect vulnerabilities for EOSIO smart contracts. To recover
more semantic information, we use heuristic-based symbolic
execution to perform in-depth analysis. Namely, semantic



information will be recovered in the constraints generated by
symbolically executing the paths being analyzed. Thus, we
can identify vulnerabilities with these constraints as patterns.

Comparing with Ethereum Smart Contract Analysis.
Although there exists a number of static analysis tools pro-
posed for Ethereum smart contracts, it is worth noting that
they cannot be applied directly (or even after minor changes)
to EOSIO smart contracts due to the differences between the
two platforms, including VM models (e.g., allowing global
variables), instructions (e.g., supporting floating-point opera-
tions) and system-level data structures (e.g., using multi-index
table to store persistent data). In brief, these functionalities
provided by EOSIO inevitably affect the design/implementa-
tion of the proposed system. For instance, we have to consider
the side effect imported by external/system libraries (see §4.3
for details). Additionally, the vulnerabilities of EOSIO smart
contracts are totally different from those of Ethereum’s, which
acquire different kinds of context information to support the
detection. For example, the rollback vulnerability requires
multiple actions being included in one transaction. As such,
the detection relies on the propagation of some specific chain
state variables (will be discussed in §5.3.4).

Comparing with C language based solution. As men-
tioned in §1, the Wasm bytecode can be converted to C code
by the official tool named wasm2c, which enables the analysis
to the corresponding C code by traditional tools like KLEE.
However, there are many limitations to this approach. First,
it has been reported [12] that the memory model adopted
by KLEE [10, 11] may lead to heavy memory consumption
and time consumption, which will inevitably affect the per-
formance or even break the analysis. Second, the conversion
from the Wasm bytecode to C code requires extra efforts. On
the one hand, lots of symbols are missing after the conversion
from Wasm to C by wasm2c. We have to manually re-declare
all the imported functions, which are necessary for the subse-
quent analysis of KLEE. On the other hand, in order to get
accurate results in vulnerability detection, we need to manu-
ally modify the converted C file to hook some functions, as a
flag, to perform the vulnerability detection. Both of the above
steps must be manually accomplished before analyzing each
contract. Last, lots of the memory-checking code is appended
by wasm2c5, which may lead to extra performance overhead
(around 85% [33]). To sum up, this solution is not applicable,
and we will demonstrate it based on evaluation results in §7.1.

As a result, no available native symbolic analysis frame-
work could be used to analyze the EOSIO Wasm bytecode
directly. Specifically, we have to overcome several technical
challenges to realize the proposed system. On the one hand,
it is known that symbolic execution based solutions may suf-
fer from inherent shortcomings, path explosion in particular.
On the other hand, when applied to vulnerability detection
for EOSIO smart contracts, there do exist platform-specific

5Although the checking code could be optimized/disabled, however, it is
not officially recommended and this issue is still under discussion [32].

issues, including memory overlap and external/system library
dependency, which will inevitably affect the effectiveness of
symbolic execution further.

4.1 Path Explosion

In EOSIO, the issue of path explosion is mainly due to two
circumstances: executing conditional jump instructions (such
as br_if) and invoking function calls. Specifically, unlike a
normal conditional jump instruction that only generates two
new branches, the br_table in EOSIO takes an array whose
elements are pointers of destination as the argument. As a
result, a single br_table can lead to n new branches, where
n is the length of the array. Moreover, a function call also
imposes many new branches to represent all possible callees.
Obviously, the number of branches will increase exponentially
if there exists a deep call stack. Unfortunately, a concatenation
of several deep call stacks is common in EOSIO contracts.
Thus, there is a practical need to mitigate this issue.

To this end, we propose a heuristic-guided pruning ap-
proach to solve the challenge. We rely on several general
pruning strategies based on our hands-on experience to miti-
gate the issue derived from branches and deep function calls.
For example, our operational observation suggests that dis-
carding paths under a specific depth threshold, which is de-
termined by the scenario, will not influence the precision of
results for (almost) all cases. Specifically, we expose two op-
tions: call depth, which limits the depth of call stack; and
timeout for users to limit the process of symbolic execution.

However, the effectiveness of the general mitigation strate-
gies are limited in practice. Fortunately, this issue in EOSIO
can be further (partially) resolved when performing vulner-
ability detection, as we only have to pay attention to some
specific features/structures of the vulnerable code snippet. For
example, when detecting fake EOS and fake receipt vulner-
abilities, only apply and transfer functions are taken into
consideration. All these technical details and vulnerability-
specific pruning strategies will be discussed in §5.3.

4.2 Memory Overlap

The memory area of Wasm can be regarded as a vector of un-
interpreted bytes [34], which means users can interpret these
raw bits through load and store with different value types.
The EOS VM adopts a linear array as its memory model,
however, this is memory-consuming for the emulation due
to mimicking the sparse memory layout of the EOSIO con-
tract [35]. Therefore, we decide to use key-value mappings to
emulate the memory, where the key is a tuple to specify the
address range, and the value is the data being stored. To better
articulate the problem itself and the model, we first define a
notion of a memory area M , which is a set of triplets that
describe the values in (different) address ranges of the mem-
ory. The triplet t has the following form: t := (l,h,D). Here
l refers to the inclusive lower-bound, h means the exclusive
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Figure 3: The interval (A+2,A+3) is overlapped after ap-
plying storen((A+2,A+5,D),M ).

upper-bound, and D represents the data corresponding to the
address range restricted by l and h. Moreover, T is the set of
all legal triplets, hence ∀t ∈ T .`(D) = h− l always holds.

Based on that, we can define a pair of naive operations
loadn(l,h,M ) and storen(t,M ) that describe memory ac-
cesses. To be specific, loadn will load data from the address
range between l and h and return a set that contains the triplets
describing the memory contents in that range. storen will in-
sert the given t into M and return the updated memory.

However, by this representation it is not guaranteed that the
memory contents within a certain address range are defined at
most once. Specifically, the overlapped memory interval may
lead to ambiguity. For example, as shown in Figure 3, if there
has already existed an interval addressed by (A+ 1,A+ 3),
the operation storen((A+2,A+5,D),M ) does not consider
the relationship between these two intervals. As a result, the
data addressed by key (A+2,A+3) in the resulting memory
area M ′ is ambiguous, meaning that loadn(A+2,A+3,M ′)
would return the set {(A+ 2,A+ 3,Do),(A+ 2,A+ 3,Dn)}
where Do is the original data written at memory address A+2,
and Dn is the data fraction of D that was inserted into the
memory area by the storen operation.

The problem is due to the overlapping memory and the
improper mapping strategy. Through further analysis, we ob-
serve that the memory overlap problem occurs mainly due
to the implementation of the store instruction. As aforemen-
tioned, Wasm provides over 20 memory access related in-
structions, e.g., i32.store, i64.store, and i32.load. For
store-related instructions, we can vary the length of D to make
it suitable for any instructions that have different length of
data to be stored; for those load-related instructions, setting
different parameters to guarantee the length of retrieved data
is enough. Consequently, we propose an implementation of
storing and loading data with the memory area, namely the
memory-merging method (see §5.1.2), to solve the problem
by merging allocated memory. By doing so, we can success-
fully overcome the challenges raised in Figure 3.

4.3 Library Dependency

To facilitate the development of smart contracts, EOSIO al-
lows the import of external functions as libraries, which means
the bodies of these imported functions will not be compiled
into Wasm bytecode. EOSIO officially provides plenty of
such functions as the system library for DApp developers.
They have been widely used in many (if not most) smart con-
tracts. As a result, our analysis will be improperly terminated
due to the lack of bodies of those imported function calls.

Memory-merging algorithm
overlapped
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Figure 4: The architecture of EOSAFE.

To resolve the dependency, we propose an on-demand and
semantic-aware approach (see §5.2) to emulate the imported
functions. We only focus on functions whose functionalities
and side effects are related to our analysis. We have to emulate
such functions properly to guarantee the correctness of the fi-
nal result. The strength and coverage of the emulation depend
on our need to perform the analysis. For some functions, we
have to cover the arguments, return value and side effect. For
instance, for the memory-related function memmov, we need
to consider all its side effect on the symbolic memory. For
some others, we may only need to consider the possible side
effects. For example, for those table-related functions which
has no return value and no effect on vulnerability detection,
e.g., db_store_i64, we can just balance the stack without
mimicking its behaviors.

5 System Design
Figure 4 depicts the overall architecture of EOSAFE, which
takes the Wasm bytecode of an EOSIO smart contract as the
input and eventually determines whether the bytecode is vul-
nerable. Specifically, EOSAFE is based on Octopus [36], a
security analysis framework for Wasm modules without sup-
porting symbolic execution. Therefore, to avoid reinventing
wheels, each smart contract will be sent to Octopus for build-
ing its corresponding Control Flow Graph (CFG) with the
disassembled Wasm instructions in preprocessing.

EOSAFE is mainly composed of three modules, i.e., Wasm
Symbolic Execution Engine (Engine for short), EOSIO Li-
brary Emulator (Emulator for short), and Vulnerability Scan-
ner (Scanner for short). As shown in Figure 4, the input after
preprocessing (CFGs) is fed to the Scanner to perform vulner-
ability detection in a two-step process (locating suspicious
functions and detecting vulnerabilities) with the Engine and
Emulator. Specifically, the Engine performs symbolic exe-
cution accordingly along with path constraints, which will
be used by the Scanner to perform vulnerability detection.
Additionally, the Engine requests Emulator to implement the



modeled behaviors when the Engine encounters the call for
imported functions. Note that the challenges discussed in §4.1
and §4.2 are addressed in §5.1 and §5.3, while the challenge
discussed in §4.3 is addressed in §5.2.

5.1 Wasm Symbolic Execution Engine

We design the symbolic execution engine as a generic frame-
work to simulate the execution of a smart contract on the
stack-based EOS VM. It accepts the CFGs and the disassem-
bled Wasm instructions as the input, and symbolically exe-
cutes instructions within basic blocks in order for all feasible
paths. During the process, the path constraints are generated
accordingly. This module needs to maintain two crucial com-
ponents, i.e., path tree and state, for further analysis. Specif-
ically, the path tree is composed of feasible paths, which
are possible control flows of the current smart contract. A
path would diverge into two paths when encountering some
conditional instructions (like br_table). To obtain feasible
paths, the Engine first relies on the SMT solver to check
the path conditions, and then prunes all the infeasible paths
that are unsolvable. Along each feasible path, we not only
record the corresponding constraints , but also all the signa-
tures of invoked imported functions. The maintained path tree
significantly contributes to the analysis of vulnerability detec-
tion (see §5.3). As to the state, we maintain some necessary
state-related information, including local/global variables, lin-
ear memory, stack, and the subsequent instructions with its
corresponding program counter. Specifically, we address the
technical challenges mentioned in §4.1 and §4.2 as follows.

5.1.1 General strategies for alleviating path explosion
We provide two options, including call depth and time-
out, for users to mitigate the path explosion issue. On the one
hand, the option call depth is used to confine the depth of
the call stack to prevent the analysis from getting into trouble
to deal with complicated branches or deep function calls. As
we know, a single function could have several sets of con-
straints corresponding to feasible paths within the function,
which may lead to an exponential growth of the number of
paths. Thus we limit the depth of call stack to improve the
coverage. On the other hand, we may still be in trouble when
encountering some cases that are extremely time-consuming.
To guarantee the progress for the whole system, the Engine of-
fers another option named timeout to control the maximum
execution time for the path-level analysis. The timeout results
will be recorded for further investigation. Note that, the path
explosion issue will be further addressed in the vulnerability
scanner (see § 5.3), as we only have to pay attention to some
specific features of the vulnerable code snippets.

5.1.2 Eliminating memory overlap
Recall the definition in §4.2, the key-value pair in the memory
M is defined as a triplet t, i.e., (l,h,D), where D is a sequence.
To be specific, a sequence is a concatenation of elements of
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A+1 A+3

a3 a4a2’

A+5

PtQt Rt

…… ……

Figure 5: The structure of M before and after the instruction
storer((A+2, A+5, a′2‖a3‖a4),M ).

the same size, where the element is represented as a. We
should notice that, in M , a is the smallest and indivisible
element, whose length is 1. Therefore, we have:

D := a0 ‖a1 ‖a2 ‖ ...‖an

in which the element can be obtained by its index (i.e., a
non-negative integer):

D[i] := ai, where i ∈ [0, n]

Moreover, the length of the sequence can be obtained by
the ` operator (e.g., `(a0 ‖a1 ‖a2) = 3). We ensure the length
of a sequence equals to its corresponding address range, i.e.,
`(D)≡ h− l.

Based on the above definitions, we can formally define the
loadn and storen operations described in §4.2 as:

loadn : N×N×2T → 2T with

loadn(l′,h′,M ) := {(l′,h′,D ′)|∃f . (∀i∈ [l′,h′). f (i)∈M∧

i∈ [ f (i).l, f (i).h))∧D ′=
h′−1n

j=l′
f ( j).D[ j− f ( j).l]}

storen : T ×2T → 2T with storen(t ′,M ) := M ∪{t ′}

Specifically, loadn will traverse the index space from l′ to
h′, concatenate elements from the memory fragments in M
that overlap with the index space, and finally return the set
containing all triplets that describe the different data values
that can be read from M within the index space. Meanwhile,
storen will return the updated M . Here f represents a function
that maps an arbitrary index to the corresponding interval in
M from which the data for this index is taken. As discussed in
§4.2, there exists a memory overlap problem, i.e., there might
be different functions f that map the same index to different
intervals. To address this issue, we have to take care of the
intervals that are overlapped with the newly incoming ones.
Formally, when a new sequence is going to be stored into M ,
say (l′,h′,D ′), we will first filter out a set I that consists of
all the overlapped triplets with (l′,h′,D ′), as follows:

I := {t | t ∈M ∧∃i ∈ [t.l, t.h). i ∈ [l′,h′)}
After that, we will remove all the intervals in I from M .

According to the overlapped relationship between them and
(l′,h′,D ′), all these intervals will be divided into the follow-
ing three types: 1) overlapped sub-intervals that need data
updating; 2) sub-intervals existing in I but not overlapped by
(l′,h′,D ′); and 3) sub-intervals of (l′,h′,D ′) that not conflict
with any existing sub-intervals in I . These three types of inter-
vals are constructed by predicates Pt , Qt , and Rt , respectively.

Finally, the reconstructed set of intervals will be merged
into M . Therefore, we define a refined version of the store



operation, called storer:

storer : T ×2T → 2T with
storer(t ′,M ) :=(M−I )∪{t | t∈T ∧(Pt∨Rt∨Qt)}

Moreover, the predicates are related to the picked out t
and detailed in Table 1. Specifically, each one of them is the
conjunction of its corresponding two sub-predicates: Inter-
val Correctness (denoted as predIC), and Interval Maximality
(denoted as predIM). predIC describes an interval with an
updated sequence. However, as there may exist multiple inter-
vals that satisfy predIC, we have to define predIM to enforce
the maximality of that interval. To better illustrate the mean-
ings of the predicates and the operation storer, we give a
concrete example in Figure 5. Originally,

M = {(A+1,A+3,a1‖a2)}
Before executing storer(A+2,A+5,a′2‖a3‖a4), the set I

will be calculated immediately as:

I = {(A+1,A+3,a1‖a2)}
According to the defined formalism of storer, it will con-

struct three triplets as:

t1 = (A+2,A+3,a′2) satisfies Pt1

t2 = (A+1,A+2,a1) satisfies Qt2

t3 = (A+3,A+5,a3‖a4) satisfies Rt3

Note that, (A + 3,A + 4,a3), (A + 4,A + 5,a4) and (A +
3,A + 5,a3‖a4) all satisfy the predIC of their correspond-
ing Rt . Meanwhile, the predIM guarantees that the range
(A+ 3,A+ 5) will be returned for predicate Rt3 instead of
the ranges (A+ 3,A+ 4), and (A+ 4,A+ 5) which would
also satisfy predIC. Consequently, M becomes:

(M − I)∪{t1, t2, t3} ≡ {t1, t2, t3}
After that, loadn(A+1,A+4,M ) will concatenate the nec-

essary parts of elements in M and finally return a set which
contains the single element (A+1,A+4,a1‖a′2‖a3).

In brief, the storer (with the original loadn) guarantees
data consistency by forcing all valid addresses appearing only
once in the key space. By doing so, we can solve all the issues
raised in Figure 3 effectively.

5.2 EOSIO Library Emulator

We introduce an on-demand and semantic-aware approach
to resolve EOSIO library dependency. We have manually
analyzed the smart contracts of the top 100 popular DApps
and existing known vulnerable smart contracts (see §7.1) to
extract all the imported functions from their Function sec-
tion (see §2.3). Then, we classify all the imported functions
into five categories according to their main functionalities to
conduct the emulation. Lastly, we can retrieve the side effects
from the emulated imported functions.

The corresponding side effects of these five imported func-
tion categories are summarized in the following.

Blockchain-state functions. These functions return con-
stants related to the blockchain system, e.g., current_time,
which are mostly used by the smart contracts as the seeds,
to generate the pseudo-random numbers. As they do not in-
troduce any side effect, we just emulate them by directly
returning a symbolic value to represent the blockchain state.

Memory-related functions. As the name suggests, func-
tions in this category are related to the symbolic memory
we have implemented. Therefore, we imitate the behaviors
as their original intention, and apply the memory-merging
algorithm when inserting the new data. Note that, we throw
an exception for undefined behaviors, e.g., the negative length
of the memcpy function due to the constraint solving.

Control flow related functions. These functions may alter
or terminate the control flow of a smart contract according
to their return results. Therefore, we will fork two paths if
necessary. For example, two paths will be generated if the
predicate of the eosio_assert function is a symbolic value
rather than a specific boolean value.

Authority-related functions. As the authority system is
merely related to the detection of missing permission check
vulnerability, we only have to examine the existence of these
functions, e.g., require_auth, without concerning about the
specific permission. Hence, we just return a symbolic value
to balance the stack.

Table-related functions. There is a special data structure
in EOSIO that allows for persistent storage of data. Similar to
the concept of storage in Ethereum, this kind of data is saved
on the blockchain that is called table. Table can be regarded
as a database that supports CRUD operations (i.e., Create,
Retrieve, Update and Delete) by several platform-specific
instructions. For these functions, we only have to focus on the
side effects to the memory rather than the internal operations.
Specifically, we have implemented them with return values
used to update the memory, as follows:

A = db_get_i64(itr,data, length)

i64.store(base,A)

For functions (e.g., db_update_i64) that do not have any
return value but modify the contents of the table, we record
their function names and arguments in the constraints.

Note that the focus on the side effect of the library functions
is critical for both the symbolic execution engine and the
vulnerability scanners in terms of correctness. For instance,
a piece of data in the memory area, say D, which will be
used later as the branch condition, is overwritten as D ′ by
invoking memcpy. If we do not consider the side effect, namely,
taking D as the branch condition directly instead of D ′, it will
inevitably affect the accuracy of the further analysis.

5.3 Vulnerability Scanner
To detect multiple vulnerabilities, the Scanner is designed
as a generic framework to perform the detection. It mainly
consists of two steps, i.e., locating suspicious functions and



Table 1: The formal definition of predicates Pt , Qt , and Rt . Specifically, each one of them is the conjunction of its corresponding
two sub-predicates: Interval Maximality (i.e., predIM), and Interval Correctness (i.e., predIC), e.g., Pt = PpredIM

t ∧PpredIC
t .

Interval Maximality* Interval Correctness

Pt ∀i ∈ (U− [t.l, t.h)). ∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∨ i /∈ [l′,h′) ∀i ∈ [t.l, t.h). (∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∧ i ∈ [l′,h′))∧ t.D[i− t.l] = D ′[i− l′]
Qt ∀i ∈ (U− [t.l, t.h)). ∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∨ i ∈ [l′,h′) ∀i ∈ [t.l, t.h). ∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∧ i /∈ [l′,h′)∧ t.D[i− t.l] = t ′.D[i− t ′.l]
Rt ∀i ∈ (U− [t.l, t.h)). ∃t ′ ∈ I . i ∈ [t ′.l, t ′.h)∨ i /∈ [l′,h′) ∀i ∈ [t.l, t.h). (∀t ′ ∈ I . i /∈ [t ′.l, t ′.h)∧ i ∈ [l′,h′))∧ t.D[i− t.l] = D ′[i− l′]
* U refers to the whole legal address space.

detecting vulnerabilities. Accordingly, our goal is to realize
detectors for the four vulnerabilities introduced in §3.

The general strategies proposed in §5.1.1 can alleviate the
path explosion problem to some extent, however, it is still not
enough to meet our needs. Fortunately, one key insight can
help further mitigate this issue, i.e., we only have to focus on
valuable functions that call imported functions with the ability
to invoke actions or change the on-chain state, e.g., send_-
inline (see §2.2), db_update_i64 and db_store_i64 (see
§5.2). These valuable functions are the key targets of our
detection. For example, attacking a smart contract that is vul-
nerable to the rollback vulnerability requires the capability to
invoke the transfer function. In total, there are 18 functions
that can lead to the modification of permanent data [37], and
our investigation shows that send_inline, db_update_i64
and db_store_i64 are the most used ones.

As a result, the two steps of the detection framework can
be further transferred and simplified as a valuable-function-
centric process: 1) locating valuable functions; and 2) veri-
fying their reachability to launch attacks. Note that the sec-
ond step of the process is optional since the reachability can
always be guaranteed. Based on this framework, we will in-
troduce the details for the four detectors.

5.3.1 Notations
To better explain the logic of detecting vulnerabilities, we first
define several symbols here:

• A , the set of names of all the valid accounts in EOSIO;
• B , the set of signatures of all the blockchain-state func-

tions as detailed in §5.2;
• F , the set of signatures of functions that are reachable

from the dispatcher;
• P , the set of signatures of functions (18 in total, see §5.3)

that can lead to the modification of permanent data;
• S , the set of signatures of invoked imported functions

during symbolic execution.

Moreover, as introduced in §5.1, we mainly focus on the
constraints and invoked imported functions, which are both
recorded in the path tree. Specifically, when the Engine sym-
bolically executes the i-th feasible path of function func, we
need to verify the existence of certain constraints and invoked
imported functions. To this end, we define the following three
predicates:

• Eeqi
func(a,b), which indicates the existence of the con-

straint a = b;

• Eneqi
func(a,b), which indicates the existence of the con-

straint a 6= b;
• Emi

func(sigtarget), which indicates there exists a sig-
nature in S i

func
6 that string matches the sigtarget , i.e.,

∃s ∈ S i
func.s∼ sigtarget

7.
For example, if predicate:

Eeqi
apply(action,“transfer”)

is true, it means that there exists a path constraint of the form
action = “transfer” on the i-th path of the apply function,
so given that this path is feasible, this means that there is a
potential path of apply leading to the transfer function. In
addition, if predicate:

Emi
apply(“send_inline(*)”)

holds, it indicates that there exists an invocation of the send_-
inline function with arbitrary arguments along the previous
path.

5.3.2 Fake EOS detection
As discussed in §3.1 and depicted in Figure 2, the fake EOS
vulnerability can only be triggered by invoking the transfer
function. Moreover, the transfer function must be reachable
from the dispatcher by attackers, which means there does not
exist proper verification of code in the dispatcher. Accord-
ingly, the detector traverses all the feasible paths generated
by symbolically executing apply to examine:

Eeqi
apply(action,“transfer”)∧

∀a ∈ (A−{sel f}).¬Eeqi
apply(code,a)

Specifically, it restricts that only the paths associated with
the transfer function can be analyzed. To accelerate the
analysis, the Engine will terminate irrelevant paths (if the
destination is not transfer) in advance to avoid further exe-
cution. Then, the detector will examine the value in code, as
discussed in §3.1. Thus, the satisfaction of any of the condi-
tions associated with code implies the existence of improper
verification. In summary, a smart contract that meets the above
conditions is considered to be vulnerable.

5.3.3 Fake receipt detection
The root cause of this vulnerability comes from inadequate
verification inside the transfer function. Therefore, it is un-
necessary to perform symbolic execution from the dispatcher

6S i
func indicates the set of signatures of functions recorded when symbol-

ically executing the i-th path of function func.
7∼ represents string matching that allows wildcard character ∗.



to the transfer function. Instead, it only needs to symboli-
cally execute the transfer if we can identify it directly.

To this end, we adopt a heuristic-based method to acceler-
ate the process. Specifically, the detector first identifies the
apply function, then enumerates all the relevant basic blocks
to verify their jump targets whose indices may point to the
suspicious transfer functions. After locating the suspicious
transfer functions, the detector will filter out valuable ones
according to their corresponding call graphs.

Note that for a given candidate, there exists at most one
transfer function (like Figure 2), which implies that the
transfer function is either one of the suspicious functions,
or inlined in the apply function. For either of the above cases,
we would symbolically execute the function that is suspected
of being the transfer function (indicated by sus). Formally,
the detection logic will be:

Eeqi
sus(to,sel f )∧∃p ∈ P .Emi

sus(p)∧
Eneq j

sus(to,sel f )∧Em j
sus(“eosio_assert()”)

Specifically, we would examine if there exists two paths
(i and j) that forked from a point in which it verifies the
value of to. For the path i that verifies the equality of to and
self, we would further examine if it calls functions that can
change blockchain state. For the other path j, which identifies
the inequality between to and self, it will call eosio_assert
to terminate the current path immediately. We should pay
attention that the above logic means that there does exist
a protection against fake receipt vulnerability. Therefore, if
no any two paths satisfy above conditions, then we consider
the EOSIO smart contract is vulnerable to the fake receipt
vulnerability.

We further apply early termination to accelerate the process.
For the valuable transfer function, the protection should be
verified before updating changes for related on-chain states.
Thus, it is reasonable to terminate the current path to inves-
tigate the collected constraints when encountering functions
like send_inline. If there are two paths meeting the pro-
tection criteria, the smart contract is immune from the fake
receipt vulnerability according to our heuristic strategy and
the analysis will be terminated.

5.3.4 Rollback detection
As shown in Figure 2, the reveal function8 often generates
random numbers to determine the jackpot winner, and invokes
the transfer function in eosio.token by an inlined action,
i.e., send_inline, to return the prize.

In some circumstances, however, the computational burden
has to be considered when handling the reveal function, as
the call depth of the send_inline function is too deep for
the Engine to reach, which may lead to call depth overflow
(similar to the fake receipt detection in §5.3.3).

8Note that “reveal” here is just used to represent the processing logic, and
the actual names may be varied in different smart contracts.

Fortunately, as it is not necessary to consider the reacha-
bility of the send_inline function in a path for any target
gambling DApp (see §3.3), we are able to apply two strate-
gies to accelerate the process to locate the reveal function.
Specifically, the first strategy is to traverse feasible paths on
demand. Instead of enumerating all paths, we only examine
paths that can be used to resolve the data/variable dependency
of the target send_inline function. The second strategy re-
duces the size of the path set being examined by the Engine
after extracting valuable functions, namely, removing redun-
dant paths whose basic blocks are thoroughly the subset of
other paths. Consequently, we can achieve the smallest path
set to cover as many basic blocks as possible.

Finally, the detection logic is associated with two properties.
Firstly, our investigation suggests that the reveal function
will generate random numbers with the rem instruction (see
§3.3) along the path inside the constructed path set. Secondly,
if the operands of the modulo calculation are (partially) gen-
erated by blockchain-state functions (see §5.2), the smart
contract will be affected by the rollback vulnerability. In sum-
mary, the detection logic must satisfy:

Emi
reveal(“rem(op_1, *)”)∧∃b ∈ B. op_1∼ b

According to our investigation, here op2 is always a con-
stant or a variable that has nothing to do with the blockchain
state. If the above conditions are met, the smart contract will
be labeled vulnerable to rollback vulnerability. Note that we
will remove all the rem instructions generated by EOSIO
official libraries, e.g., eoslib, to reduce the false positives.

5.3.5 Missing permission check detection
As discussed in §3.4, we focus on the functions that are valu-
able and lacking authority validation before the sensitive op-
erations. Again, such functions should be reachable through
the apply function. After filtering all the valuable functions
by call graph, we would symbolically execute apply to filter
out all the reachable ones from the dispatcher:

Eeqi
apply(code,sel f )∧∃ f ∈ F .Eeqi

apply(action, f )

Then, we would symbolically execute func to obtain its
path tree with the corresponding constraints. To be specific,
for any feasible path j of func, if it invokes sensitive functions,
e.g., db_update_i64, without checking the permission of
caller by require_auth, i.e.,:

Em j
func(“db_update_i64(*)”) ∧

¬Em j
func(“require_auth(*)”)

we regard the smart contract as vulnerable to the missing
permission check vulnerability.

6 Implementation and Experimental Setup
Implementation We take advantage of Octopus [36] to con-
struct the CFG of Wasm bytecode, and use the Z3 Theorem
Prover (version 4.8.6) as our constraint solver to prune infeasi-
ble paths. All the other major components, including Engine,



Emulator and Scanner are all designed and implemented by
ourselves. The implementation is based in Python, which
includes over 5.5k lines of code.
Experimental Setup Our experiment is performed on a
server running Debian with four Intel(R) Xeon(R) E5-2620 v4
@ 2.10GHz and 64G RAM. As mentioned in §5.1.1, the En-
gine has provided two configuration options (i.e., call depth,
and timeout) to partially address the path explosion issue.
During our experiments, we empirically set the call depth as 2
layers, as we find it is enough to identify most vulnerabilities.
As to the exploration time, we empirically set the upper bound
as 5 minutes, due to the following two main reasons. First,
within 5 minutes, all the smart contracts in our benchmark
can be fully analyzed and detected with promising results
(see §7.1). Second, as we seek to apply EOSAFE to all the
EOSIO smart contracts, we have to make a trade-off between
accuracy and scalability. Therefore, the exploration time for
each contract is set at a maximum of 5 minutes. Note that all
these settings could be easily configured and customized in
our tool, to fulfill the different requirements.

To compared with the C language based solution discussed
in §4, we also setup the KLEE environment to perform the
evaluation. Specifically, for wasm2c, we adopted the latest
version in the main branch9 as it is still under development;
meanwhile, for KLEE, we choose the latest stable version
(KLEE:2.110) released within the official docker image. Ini-
tially, we set the exploration time as 5 minutes, the same with
EOSAFE. Unfortunately, as almost all the tasks could not be
completed due to the 5-minute timeout, we decided to give it
another trial and increase the exploration time to 30 minutes,
which shall lead to a better performance. Beyond that, we left
the remaining configuration items unchanged and performed
subsequent experiments on the same server used by EOSAFE.
Research Questions. Our evaluation is driven by the follow-
ing three research questions (RQs).

RQ1 How accurate is EOSAFE in detecting vulnerabilities in
EOSIO smart contracts?

RQ2 Are these vulnerabilities prevalent in the ecosystem?

RQ3 How many smart contracts have been exploited by at-
tackers and what are the impacts of these attacks?

To answer RQ1, in the absence of established benchmarks
in the research community, we propose to collect real-world
attacks and manually examine the victim smart contracts to
craft a reliable benchmark. To answer RQ2, we collect all
the available smart contracts on EOSIO and their historical
versions. Then we apply EOSAFE to detect the presence
of security vulnerabilities, and characterize the evolution of
vulnerabilities. To answer RQ3, we further collect all the on-
chain transactions related to the flagged vulnerable contracts,
and then propose heuristics to pinpoint possible attacks.

9The hash is be5e8bf8ec698f9ad3a1b6fbb412680995fe39bf.
10The sha256 digest is 33a568ccee52efc1fbcce4fb33bab476ce666be

f2fa3e628627881bdd70c9d0f8.

7 Experimental Results
7.1 RQ1: Accuracy of Vulnerability Detection

Creating the Benchmark. To evaluate EOSAFE, we first
make efforts to craft a benchmark. EOSIO attacks were ob-
served and reported ad hoc from time to time. Thus, we resort
to the security reports released by well-known blockchain
security companies to collect all the related publicly verified
attacks [26, 27] as the ground-truth. We have collected 38 at-
tacks, targeting 34 unique vulnerable smart contracts in total.
Although these attacks were confirmed by the official team of
the corresponding DApps, we found that some attacks are ir-
relevant to the smart contract itself but concern other external
factors, e.g., the server’s issues [38]. Thus, we further manu-
ally examined all the involved smart contracts. Specifically,
we found that 3 out of the 10 fake EOS attacks are related to
server issues (e.g., [38]). For rollback, 11 out of 21 attacks
are due to the wrong reveal strategy of the server (e.g., [39]).
Besides, 2 of them were variants of rollback, which are re-
lated to the configuration of some nodes on EOS MainNet
(see [40]). At last, we excluded all the above contracts to
make sure all the attacks are resulted from the vulnerability
in smart contracts. The benchmark can be accessed at [23].

Overview of the Benchmark. The distribution of the
benchmark is shown in Table 2. Note that we also collected the
corresponding patched smart contracts (without vulnerabili-
ties) as comparison to evaluate the effectiveness of EOSAFE.
Additionally, only two vulnerable smart contracts related to
the missing permission check vulnerability were reported,
and neither of them has been patched yet. Thus, we further
manually created 4 pairs of smart contracts (with and without
such vulnerabilities) to complement our benchmark. At last,
we have included 52 smart contracts in our benchmark. As
the benchmark is small-scale, which may not be sufficient
to comprehensively evaluate the effectiveness of EOSAFE,
we will further perform a manual investigation to verify the
detection results in the wild (see §7.2.1).

Results. Among the 52 smart contracts, EOSAFE flagged
26 as vulnerable, with only one false negative case (belongs
to rollback) and no false positives, leading to precision and
recall of 100% and 96.30%, respectively. Table 2 shows the
detailed results. For the only false negative case of rollback,
i.e., fairdogegame/betdogewallt, as the number of suspi-
cious reveal functions is too high to build paths, it is difficult
to symbolically execute each of them for a given timeout (5
minutes here). After manually locating the vulnerable func-
tion, i.e., func73, we can get a correct result. Therefore, the
false negative is introduced by the optimization strategies,
which is a trade-off between accuracy and scalability. It is
easy to tune our approach to cover it, e.g., by exploring more
paths and increasing the analyzing time. Nevertheless, the
exceptional case is rarely seen during experiments, as most
smart contracts are not too complicated to handle.

Comparison with KLEE. To enforce fair comparison, we



Table 2: A Comparison of EOSAFE and KLEE on the benchmark. (TP – True Positive, FP – False Positive, TN – True Negative,
FN – False Negative, SR – Success Rate, P – Precision, R – Recall, F1 – F1 Measure)

Type # Samples(Vul/Non-Vul) EOSAFE KLEE
TP FP TN FN SR** P R F1 TP FP TN FN SR** P R F1

Fake EOS 14 (7/7) 7 0 7 0 100.00% 100.00% 100.00% 100.00% 5 0 7 2 50.00% 100.00% 71.43% 83.33%
Fake Receipt 10 (5/5) 5 0 5 0 100.00% 100.00% 100.00% 100.00% 0 0 5 5 0.00% - - -
Rollback 18 (9/9) 8 0 9 1 94.44% 100.00% 88.89% 94.12% 0 0 9 9 0.00% - - -
Permission 10 (6/4)* 6 0 4 0 100.00% 100.00% 100.00% 100.00% 5 0 4 1 90.00% 100.00% 83.33% 90.91%
Total 52 (27/25) 26 0 25 1 98.08% 100.00% 96.30% 98.11% 10 0 25 17 30.77% 100.00% 37.04% 54.05%
* 4 pairs of the missing permission check samples are manually crafted. ** Timeout or memory error caused path explosion will be regarded as failed cases.

apply KLEE to the same benchmark to evaluate its overall
performance. The detailed results are shown in Table 2. Note
that we conservatively treat those contracts that are failed in
analysis but bug-free as true negatives (TN), which conse-
quently results in 100.00%, 37.04%, and 54.05% of precision,
recall and f1-measure, respectively. To be specific, for those
27 de facto vulnerable contracts and 25 non-vulnerable ones,
KLEE can only successfully identify 10 and 6 of them, re-
spectively. Interestingly, all these 16 cases are related to either
fake EOS vulnerability or missing permission check vulnera-
bility. For the other 36 cases (including all the contracts under
the categories of fake receipt and rollback vulnerabilities),
KLEE failed to analyze them. In other words, the results are
all timeout (under 30 minutes) or OOM. After an in-depth
investigation, we ascribed the failure to the massive number of
jump and call instructions. Entering from the dispatcher with-
out optimization makes it difficult to complete the analysis
under the required time and limited memory.

7.2 RQ2: Prevalence of Vulnerabilities

Dataset. We consider all the 53,666 smart contracts (includ-
ing history versions) from June 9, 2018 (the very beginning
of EOS MainNet) to November 15, 2019. Note that differ-
ent from Ethereum smart contracts that cannot be modified
once deployed, EOSIO contracts could be updated and bind
with the same account as explained in §2.1. Thus, we use the
EOSIO account to label each unique smart contract, i.e., one
account may correspond to multiple contract versions. As a
result, we have 53,666 different versions of contracts, belong-
ing to 5,574 EOSIO accounts. As the rollback vulnerability
is only related to the gambling DApps, we can shrink our
candidate list here. We refer to DAppTotal [31] – a credible
multi-platform DApp browser, to label the gambling DApps
and use such contracts (17,394) for rollback vulnerability de-
tection. Moreover, for both the fake EOS and the fake receipt
vulnerabilities that only link to the transfer functions, we
identified the candidates, i.e., EOSIO smart contracts with
transfer functions. Specifically, 47,396 versions of con-
tracts and 4,678 unique ones are extracted. For the missing
permission check vulnerability, we apply the detector to all
the 53,666 contracts (see Table 3).

7.2.1 Overall results
Table 3 shows the overall results. Surprisingly, over 25% of
the 53,666 smart contracts are labeled vulnerable (see Column

Table 3: Vulnerability detection results in the wild.
Type # Candidates # Vulnerable (%*) # Unique # Vulnerable (%*)

Fake EOS 47,396 1,457 (2.71%) 4,678 272 (4.88%)
Fake Receipt 47,396 7,143 (13.31%) 4,678 2,192 (39.33%)
Rollback 17,394 1,149 (2.14%) 913 84 (1.51%)
Permission 53,666 8,373 (15.60%) 5,574 662 (11.88%)
Total 53,666 13,752 (25.63%) 5,574 2,759 (49.50%)
*The percent is calculated based on all the EOSIO smart contracts with their versions.

3). The missing permission check vulnerability is the most
prevalent, affecting over 15% of the smart contracts. The fake
receipt vulnerability is also quite common (13%). For the
rollback vulnerability, although we only analyzed 17K smart
contracts of gambling DApps, over 1,000 of them are labeled
vulnerable. The fake EOS vulnerability affects roughly 2.7%
of the smart contracts. It suggests that security vulnerabilities
are prevalent in EOSIO smart contracts, revealing the urgency
to identify and prevent such vulnerabilities.

Vulnerable Unique Smart Contracts. As one smart con-
tract may correspond to multiple versions, we further charac-
terize the distribution of vulnerabilities from the perspective
of unique contracts (accounts). As shown in Column 5 of
Table 3, for the 5,574 unique contracts, roughly half of them
have at least one vulnerable version. 10% of unique smart
contracts account for 61.24% of vulnerable versions, which
indicates most of vulnerable versions are imported by a small
portion of smart contracts. Besides, there are 1,793 unique
smart contracts, whose versions are all vulnerable (41% of
them have at least two versions). The contract eossanguoone,
which is a popular game DApp, has the most number of vul-
nerable versions (356 versions). By manual inspection, we
found that all its versions released before Sep. 4th, 2019 have
suffered from the fake receipt vulnerability, and then it was
patched by the developer. The missing permission check vul-
nerability has been found since Aug. 2019, which may be due
to the import of the new functions without authority check.

Manual Verification To further verify the veracity of the
results, we manually sampled some contracts labeled by
EOSAFE. Specifically, we randomly sampled 10 labeled vul-
nerable contracts and 10 labeled bug-free contracts for each
type of vulnerabilities. For these collected 80 samples, we
manually reverse-engineered all of them to verify the labeling
results11. The results show that, there exists only one false
negative case which cannot be successfully detected as the

11The verification is a time-consuming process, and it took the first two
authors three whole days to analyze them. These samples are also attached
into the benchmark at [23].



Table 4: The time to fix the vulnerabilities.
Type # Unique (Vul) # Latest with Vul (%) # Patched (%) Patch Time

Fake EOS 272 207 (76.10%) 65 (23.90%) 14.85d
Fake Receipt 2,192 1,735 (79.15%) 457 (20.85%) 24.01d
Rollback 84 28 (33.33%) 56 (66.67%) 4.24d
Permission 662 313 (47.28%) 349 (53.72%) 4.38d*
Total 2,759 2,080 (75.39%) 679 (24.61%) 16.84d
*The average patch time for missing permission check is calculated on the action level.

rollback vulnerability12, while all the other 79 ones are cor-
rect. We then conducted an in-depth analysis to understand
that failed case. The investigation showed that the constructed
path (see §5.3.4) had indeed reached the target reveal func-
tion. The failure, similar to the false negative case mentioned
in §7.1, was due to the extreme complicated control flow in-
side the function. However, after adopting the same method
in §7.1, i.e., manually feeding the reveal function into the
scanner, it was still timeout even after 30 minutes. As such,
due to the conservative strategy, EOSAFE mislabeled this
contract as safe to produce the false negative. In nutshell, the
result is inline with our evaluation on the benchmark.

7.2.2 Time to fix the vulnerability
We next investigate the time to fix the vulnerabilities for each
smart contract, which could be used to measure the window
period for the attackers to exploit these vulnerabilities.

Result. As shown in Table 4, for the 2,759 unique smart
contracts with vulnerable versions, over 75% of them still
have at least one security vulnerability in their latest version
by the time of our study. 679 unique smart contracts have
patched all their vulnerabilities during their evolution, and the
average window period is 16.84 days.

Patch Rate. We further analyze the patch rate across vul-
nerabilities. The rollback vulnerability has the highest patch
rate (over 66%), and the average window period is roughly
4 days. The reason for its timely response might be that the
rollback vulnerability only exists in game/gambling DApps,
which usually have high balance in their accounts. The finan-
cial loss could be devastating if developers leave the vulner-
ability alone. For the missing permission check, 349 smart
contracts have patched all their missing check actions. Note
that we measured the average patch time on the action level
here, as one vulnerable contract may have more than one miss-
ing permission check actions. There are 647 patched actions
in total – roughly 500 of them are patched within only one
day, while the overall patch time is 4.38 days. It suggests that
most of the missing permission checking actions are patched
timely, while a few contracts take relative long time to fix.
In contrast, the fake EOS and the fake receipt vulnerabilities
have the lowest patch rates (i.e., roughly 20%), and the patch-
ing time is relative long (i.e., 2 to 3 weeks on average). Our
manual check found that, half of the smart contracts related
to fake receipt are patched within 24 hours, which further
indicates that some inactive smart contracts drag the average
patch time. Most of the inactive smart contracts (accounts)

12Named as eospindealer, deployed at 2018-12-28 03:14:10

have no balance and very few transactions, which are usually
not the targets of attackers.

7.3 RQ3: The Presence of Attacks
7.3.1 Approach
It is non-trivial to explore how many of the vulnerable smart
contracts have been successfully exploited. Until recently, a
lot of ad hoc (often manual) efforts of security researchers [26,
27] are necessary to verify them. Thus, we first collected all
the on-chain transactions including the ones of labeled non-
vulnerable contracts, and then designed a set of heuristics to
locate the suspicious attacks, which will be used to facilitate
further manual verification to determine the real attacks. In
total, we have collected over 2.5 billion transaction records.

Fake EOS Attack. The most important behavior of this
attack is to defraud the official EOS tokens from the vulnera-
ble smart contract by using the fake EOS tokens, which can
be identified through the transaction records storing the in-
formation of token issuers. According to the observation, we
will first filter out all the transactions of token transfer whose
token symbols are “EOS”. Then, these transactions will be
grouped according to the following definitions:

• fake-sending transactions that send fake EOS tokens.
• true-sending transactions that send true EOS tokens.
• true-receiving transactions that receive true EOS tokens.
As a result, we can define a potential attack as a sequence

of a fake-sending transaction followed by a true-receiving
transaction. Note that a fake-sending transaction A can be
joined with a true-receiving transaction B, if and only if they
appear on the same period while A occurs before B. For
all these potential transactions, we focus mainly on those
who have gained more true EOS tokens than they spent. To
this end, we further examine the input-output ratio between
the attacker and the vulnerable contracts to determine the
suspicious attacks. Finally, based on the suspicious attacks,
we will verify whether the vulnerable smart contracts will
resume the normal execution (e.g., running a lottery for a real
player) after receiving the fake EOS tokens. If so, we will
mark the suspicious transaction as a fake EOS attack.

Fake Receipt Attack. The key feature of this attack is that
the vulnerable smart contract is misled by the fake notifica-
tion to receive tokens, while the actual token transfer occurs
between the two accounts belonging to the same attacker (see
§3.2). For simplicity, we will use from_account and to_ac-
count to represent the two accounts in the following, where
to_account will send the fake receipt to vulnerable contract,
and from_account is the ultimate beneficiary.

Accordingly, we will first query all the transactions of token
transfer whose tokens are issued by eosio.token and token
symbols are “EOS”, to get all the true EOS token transfers.
Then, we will filter out the transactions whose receivers are
neither eosio.token, nor the from_account or to_account.
These transactions will be regarded as the fake receipts with
crafted notifications. Next, if a from_account sends a fake



Table 5: Overall results of attack detection.
Type # Attacks # Attackers

/ Victims Financial Loss ($) # Verified

Fake EOS 9 10 / 9 652,428.48 8
Fake Receipt 27 28 / 17 1,020,831.94 7
Rollback 12 12 / 9 52,984.00 12
Permission 183 - / 144 - -
Total 48* 50 / 34* 1,726,244.42 27
* Exclude the results of missing permission check.

receipt before making profits from the vulnerable contract,
we will mark the corresponding transaction as potential. After
that, by eliminating the unrelated EOS spending transactions
(e.g., for testing purpose initiated by the attacker), we focus
mainly on those who have gained more true EOS tokens
than they spent. If the input-output ratio are still high, the
corresponding transactions are labeled as suspicious.

Finally, we will manually check the suspicious transactions
whether the vulnerable smart contract will resume the normal
execution after receiving the fake receipts. If so, we will mark
such a transaction as a fake receipt attack.

Rollback Attack. As mentioned in §3.3, the transaction of
this attack is composed of sequential invocations of actions,
which can be used as the pattern to identify the attack.

Specifically, we will first filter out all the transactions which
contain at least four actions as the potential transactions.
Among them, we will select suspicious ones that meet the
following four conditions: (1) the first and the last actions
must be invoked in the same contract, where the first means
to start the attack, and the last will determine whether the
rollback is necessary after receiving the reward from the vul-
nerable smart contract. (2) the two actions in the middle must
be token transfers through eosio.token, and the sender and
the receiver (either one must be the vulnerable smart contract)
of the two actions are arranged opposite to each other. (3) at
least one of the counterparties, i.e., either the sender or the
receiver, is labeled as the gambling or game DApp. (4) the
amount of tokens transferred from the vulnerable smart con-
tract is more than it received. Besides, it is worth noting that,
the rollbacked transactions will not be recorded on the chain.
As a result, we have to manually check the player’s successful
rate per unit time, namely, if it is oddly high than the others,
we will mark the suspicious transaction as a rollback attack.

Missing Permission Check Attack. Because authority in-
formation is along with the invoked transaction, we can ex-
amine whether it belongs to the callee contract to identify this
attack. More precisely, we will first screen out all the transac-
tions whose target actions are the vulnerable actions, to get
suspicious transactions. Then, if the transaction’s authority
does not belong to that smart contract the action belongs to,
we will mark it as a missing permission check attack.

7.3.2 Results
The overall result is shown in Table 5. We have identified 48
attacks in total, including 9 fake EOS attacks, 27 fake receipt
attacks, and 12 rollback attacks. Note that 35 attacks among

Table 6: Top 5 identified attack events.
Type Attacker Account(s) Victim Account Financial Loss (EOS/$)

Fake Receipt
il***23
wh***r1 eosbetdice11 138K/757K

Fake EOS re***et eoscastdmgb1 63K/328K

Fake Receipt
re***om
re***et nkpaymentcap 54K/201K

Fake EOS aa***fg eosbetdice11 44K/234K

Fake Receipt
be***s1
be***s2 epsdcclassic 17K/42K

Total - - 341K/1,639K

them were first discovered by our approach. Additionally,
we also identified 183 invoked actions (belonging to 144
contracts) which missed the permission checking. Note that
for these missing permission check actions, some of them are
designed intentionally instead of unexpected implementation.
It is hard to differentiate whether they are attacks or not, and
it is impossible to estimate the financial loss. Therefore, we
regard them as misuse actions instead of attacks.

Impact of Attacks. The 48 identified attacks lead to over
341K EOS loss, which is roughly 1.7M USD according the
close price of the date of attacks. Note that we have collabo-
rated with a leading blockchain security company to report
these attacks to the DApp developers, and 27 of them have
been confirmed, accounting for more than 99% of the total
loss. All the unconfirmed suspicious attack events only relate
to a few EOS, and most of them are no longer active. The
Top-5 confirmed attack events are listed in the Table 6.

Unexploited Vulnerable Contracts. It is interesting to ob-
serve that, although thousands of contracts are vulnerable (see
Table 3), only a few of them have been successfully exploited
by attackers in the wild. Thus, we have manually sampled
40 labeled vulnerable smart contracts (10 for each vulnerabil-
ity), for reverse engineering and inspecting their transactions
and balances. We observe two major reasons leading to this.
First, the popular smart contracts (with high balances) were
the main targets of attackers, but these vulnerable contracts
were patched in time according to the results from §7.2.2,
which left a very short window for attackers. Based on the
transaction data, we observed that attackers were always try-
ing to exploit the popular contracts. Although some attacks
were successful (see Table 6), most of them failed. Second,
most of the unpatched smart contracts were inactive with low
balances. As a result, it was hard, if not impossible, for them
to attract attackers, who must have considered the trade-off
between the low profits and the costs of attacks.

8 Threats to Validity
First, our system inherits the limitation of symbolic execution,
i.e., path explosion. Although we have implemented several
optimization strategies, EOSAFE still reports false negative
cases, as discussed in §7.1. However, we believe this is not
a big issue for our system. On the one hand, most of the
smart contracts are not as complicate as other software. A
large portion of smart contracts can be fully analyzed in a
short time. On the other hand, we have proposed specific



optimization methods when searching for the vulnerabilities,
which could eliminate most irrelevant paths. Nevertheless, we
can further take advantage of advanced symbolic execution
techniques [9, 41–45] to alleviate this issue.

Second, we rely on heuristics and semi-automated meth-
ods to verify attacks (see §7.3). This, of course, might not
be scalable and could mean that we only offer a coarse esti-
mate of the attacks. However, a large portion of the attacks
we identified are confirmed by DApp teams, which suggests
that our approach is quite reliable. Nevertheless, some other
techniques (e.g., dynamic testing) can be applied to help us
automatically identify attacks. In this paper, our main contri-
bution is automatically detecting the security vulnerabilities,
while attack verification is not a main focus in this work.

Third, there might exist some new vulnerabilities we did
not cover in this current prototype, as well as the general vul-
nerabilities in other software systems, such as buffer overflow.
In this paper, we focus only on the EOSIO-specific vulnerabil-
ities, the main reason is that we are lacking ground-truth for
other security bugs. Nevertheless, we have tried our best to
minimize the burden for further development efforts. Specifi-
cally, we have adopted a modular design scheme, hence the
Engine and the Emulator can be treated as black boxes and
used directly. Moreover, the pruning strategy in Engine is
generic rather than vulnerability-specific. However, building
vulnerability scanner always requires prerequisite domain
knowledge for any security analyst. Finally, EOSAFE can
also work on the Wasm bytecode from other platforms (e.g.,
web), where the only extra effort is to resolve the library
dependency for the corresponding platform.

9 Related Work
WebAssembly Bytecode Analysis WebAssembly is the new
low-level language for the web. There are only a handful
work on analyzing the Wasm bytecode [46–50]. For example,
Lehmann et al. [48] has proposed a general-purpose dynamic
analysis system for Wasm, which allows developers or re-
searchers to implement heavyweight dynamic analysis, e.g.,
instruction counting and memory access tracing. However, all
of them were focused on web applications, which were mainly
dynamic analysis. In this paper, we implemented a general
symbolic execution framework for Wasm, and made effort to
support the security analysis of EOSIO smart contracts.

EOSIO Analysis There are several work focused on the
EOSIO [51–53]. For example, Huang et al. [52] proposed to
identify the bot-like accounts in EOSIO based on transaction
analysis. Lee et al. [53] introduced and studied four attacks
stemming from the unique design of EOSIO. Several technical
blogs [6, 7, 38, 40, 54] from the industry have reported the
security attacks of EOSIO. However, there are no available
work on detecting the security vulnerabilities in EOSIO.

Vulnerability Detection of Ethereum Smart Contracts
Ethereum has received lots of attention from academia, and
a number of studies were focused on vulnerability detec-

tion [14–19,55–57]. For example, [16] was mainly focused on
the overflow vulnerabilities. Luu et al. [18] proposed Oyente,
the first symbolic execution tool for detecting vulnerabili-
ties in Ethereum smart contracts. Machine learning and fuzz
testing techniques [55] were also adopted to identify the vul-
nerabilities in Ethereum smart contracts. As we mentioned
earlier, the two ecosystems (Ethereum and EOSIO) are totally
different, and no previous work on Ethereum can be applied to
analyze EOSIO smart contracts directly. Nevertheless, we ad-
mit that the general idea of Ethereum vulnerability detection
can be incorporated to improve our work.

10 Conclusion
To the best of our knowledge, this paper presents the first
work on detecting security vulnerabilities in EOSIO smart
contracts. We propose EOSAFE, an accurate and scalable
framework based on a well designed native Wasm symbolic
execution engine. Experiment results suggest the promising
performance of EOSAFE. Our large-scale measurement study
further reveals serious security issues in the ecosystem, i.e.,
over 25% of the smart contracts are vulnerable and a number
of high-profile attacks have been successfully carried out.
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