
DPAC: A Reuse-Oriented Password Authentication Framework for Improving
Password Security ∗

Hua Wang, Yao Guo, Xiangqun Chen
Key Laboratory of High Confidence Software Technologies (Ministry of Education)

Institute of Software, School of EECS, Peking University
{wanghua04, yaoguo, cherry}@sei.pku.edu.cn

Abstract

Traditionally, password authentication is distributed to
each application, so developers have to take countermea-
sures by themselves to defend passwords against various
threats. This requires a great amount of effort, a lot of which
is repetitive. The high cost poses a potential hindrance to
the adoption of countermeasures.

This paper proposes a new reuse-oriented password au-
thentication framework, called Desktop Password Authen-
tication Center (DPAC), to reuse counter-measures among
applications, thus reducing the cost of defending passwords
against threats. In DPAC, we move the task of authentica-
tion, as well as the responsibility for protecting passwords,
from applications to a dedicated Authentication Center (Au-
thCenter), so that countermeasures only need to be taken in
AuthCenter and afterwards are reused by all applications.
This solution can eliminate a lot of repetitive work and re-
duce the cost significantly. We demonstrate the feasibility
of DPAC by implementing a prototype, in which we migrate
the widely used OpenSSH to DPAC and implement two ex-
ample countermeasures.

1 Introduction

The security of passwords is extremely important for
password-based network applications. Numerous re-
searchers have attempted to enhance the security of pass-
words from various perspectives. This paper focuses on en-
hancing the password security in the client side by lowering
the cost of taking countermeasures against threats.

The traditional password authentication scheme dis-
tributes authentication tasks to each application. This
scheme therefore is referred to as decentralized password

∗This research is supported by the National High Technology De-
velopment 863 Programs of China under Grant No. 2007AA01Z462,
2007AA010304 and 2008AA01Z133.

authentication (DPA) in this paper. With DPA the responsi-
bility for protecting passwords is also distributed to each
application, because passwords are processed in applica-
tions’ memory. The developers have to take corresponding
countermeasures by themselves to defend against various
threats, so protecting passwords in DPA often increases the
development cost considerably, resulting few or even none
of existing countermeasures being adopted.

An effective approach to lowering the cost is to reuse
countermeasures among multiple applications. The idea of
reuse has been adopted by the Pluggable Authentication
Module (PAM) framework [8] to lower the cost of apply-
ing and changing authentication mechanisms. But PAM
is incompetent to reuse countermeasures in the client side
because passwords still appear in the memory of applica-
tions. PAM modules receive passwords from applications,
so users have to input their passwords to applications. Be-
sides, PAM modules are loaded into the address spaces of
applications and all their data is accessible by applications,
including passwords. Consequently, countermeasures must
be taken in each application to protect passwords. Essen-
tially, the password authentication scheme of PAM is DPA.

We propose a new reuse-oriented password authentica-
tion framework, called Desktop Password Authentication
Center (DPAC), to reuse countermeasures among applica-
tions in the client side. The key idea behind DPAC is
to move the task of password authentication from applica-
tions to a dedicated password manager, called Authentica-
tion Center (AuthCenter), thus keeping applications away
from passwords. AuthCenter is shared by all applications,
so countermeasures can be reused, eliminating lots of repet-
itive work and reducing the cost significantly. It is easier to
apply many sophisticated and effective countermeasures to
AuthCenter to improve the password security for all appli-
cations. In addition, DPAC also provides great flexibility
so that adding or replacing countermeasures and authenti-
cation protocols is convenient.

We demonstrate the feasibility of DPAC by implement-
ing a prototype, in which two example countermeasures are

2008 11th IEEE High Assurance Systems Engineering Symposium

1530-2059/08 $25.00 © 2008 IEEE

DOI 10.1109/HASE.2008.22

475

DPAC Driver

AuthCenter

DPAC Library

App 1 App n

Server 1 Server n

...

...

...
Authentication

Modules

Password

Cache

Network

Server

Client

Pipe

Pseudo-Password

User

System
Password

Figure 1. Architecture of DPAC Framework

taken in AuthCenter to thwart user mode keylogger and fake
login form respectively. We also migrate the widely used
OpenSSH to DPAC.

The rest of this paper is organized as follows. Section 2
describes the design of DPAC. Section 3 describes two ex-
ample countermeasures used in DPAC. Section 4 describes
the migration of OpenSSH to DPAC. Section 5 discusses
related work. And the conclusion is given in section 6.

2 Design of DPAC

2.1 Architecture of DPAC Framework

The main purpose of DPAC is to isolate passwords from
applications during authentication, so that countermeasures
only need to be taken in AuthCenter and are reused by all
applications. Thus we need to process passwords in a sep-
arate and dedicated address space inaccessible by applica-
tions. The overall architecture of the DPAC framework is
illustrated in Figure 1. The shaded parts are DPAC compo-
nents, whose functionalities are described below.

AuthCenter is the main component in the framework,
performing all password-related operations. It is designed
as a separate program having its own address space, so that
passwords in it are not accessible by other applications.

The authentication service provided by AuthCenter is
encapsulated in a dynamic library, called DPAC library.
This library hides the details of interactions between appli-
cations and AuthCenter, and provides a simple and clear
interface to application developers. Currently the interface
contains only one function, namely dpac authenticate.

For the sake of convenience, we add the capability of
caching passwords to DPAC. The password cache is a group
of files used to store passwords. All cached passwords are
under the control of AuthCenter. Each user has its own
password cache file, and is allowed to set an access pass-
word, preventing accesses from other users.

To increase flexibility, the client-side operations of dif-
ferent authentication protocols are packed into separate

modules, namely authentication modules. These modules
are implemented as dynamic libraries that can be loaded and
replaced at runtime.

We also modify the keyboard driver to thwart user mode
keyloggers. The modified driver is called DPAC driver,
which intercepts and translates all typed characters when
a user is entering his password.

2.2 Authentication Process

In DPAC, the password authentication process involves
four parties: user, server, AuthCenter and application. The
outline of the password authentication process is as follows.
First the application calls the dpac authenticate function in
the DPAC library to launch AuthCenter, which in turn dis-
plays a login form to the user. In this form the user may
choose to input a new password or select a cached one.
Then AuthCenter loads a proper authentication module ac-
cording to modname passed from the application and begins
to communicate with the server to verify the password. The
messages between them are relayed by the application.

Various authentication protocols may be used in DPAC,
as long as they satisfy the following principle: the messages
between AuthCenter and the server should not reveal pass-
words to applications. This principle ensures that passwords
will not be propagated to applications. We use a simple
challenge-response protocol based on HMAC [2] as an ex-
ample to demonstrate the authentication process. The steps
are as follows:

1. The application first connects to the server and sends a
login request to the server. Then the server sends mod-
name back to inform the application which authenti-
cation protocol should be used, as well as necessary
parameters for the authentication module. Here the pa-
rameter is nonce, a random value used as the challenge.

2. The application calls dpac authenticate to launch Au-
thCenter, passing modname to AuthCenter to inform

476

which authentication module should be loaded. nonce
is also passed to AuthCenter.

3. According to the received modname, AuthCenter looks
up and loads a proper module. Then AuthCenter
prompts the user to input his id and password or se-
lect a cached one.

4. AuthCenter calculates auth, the HMAC code of nonce,
with the password as the shared key. id and auth are
sent back to the application. The application relays
them to the server.

5. The server checks auth by recalculating the HMAC
code of nonce and comparing it with auth. The result
of the authentication is returned to the application.

In the authentication process, all password-related oper-
ations are done in AuthCenter. Therefore the application
does not need to care about the protection of passwords. It
only needs to call dpac authenticate and receive the result
from the server. So writing the authentication code in DPAC
is much simpler than in the traditional scheme.

3 Taking Countermeasures in AuthCenter

This section describes the adoption of two example
countermeasures, thwarting user mode keyloggers and fake
login forms respectively. We demonstrate that during the
adoption only the AuthCenter is affected, without requiring
applications to be modified.

3.1 User Mode Keylogger

The keylogger is one of the most insidious and preva-
lent threats to passwords. To thwart this threat, we use
a countermeasure similar to PwdHash [7], shown in Fig-
ure 2. PwdHash hooks low level key event handler and fil-
ters key events when a user enters his password. We en-
hance the idea by modifying the keyboard driver in the ker-
nel, adding a translator and a password buffer, as well as
dividing its working mode into normal mode and password
mode. When the driver works in the normal mode, the trans-
lator simply passes what the user types to applications, just
like the unmodified driver. While working in the password
mode, the translator will send all characters to the password
buffer. At the same time it translates each character, except
for control characters such as enter and backspace, to a de-
fault character, e.g. ”*”, and sends them to applications.
Finally, what the keyloggers and AuthCenter receive is a
string only consisting of default characters. The real pass-
word is saved in the password buffer. It can be retrieved
through a dedicated system call which can only be invoked
by AuthCenter.

Pseudo-Password

Translator Pwd Buf
Password

Password

Figure 2. DPAC Driver

3.2 Fake Login Form

Malicious programs may display fake login forms to
spoof users into entering their passwords. Some counter-
measures have been proposed to thwart this threat. We use
a picture-based countermeasure similar to Dhamija and Ty-
gar’s scheme [3]. The appearance of the login form dis-
played by AuthCenter is customizable by users. A user is
permitted to register a picture to AuthCenter through a ded-
icated configuration tool, which is used as the secret be-
tween the user and AuthCenter. Subsequently, when the
user launches AuthCenter, it will display the login form
with the user’s picture as the background. Malicious pro-
grams do not know what the picture is and can not display
the correct background, so the user is able to recognize fake
login forms easily.

4 Applying DPAC to OpenSSH

DPAC simplifies the task of writing authentication code
when developing new applications. Besides, the cost
of migrating existing applications to DPAC is also low.
We demonstrate this by applying DPAC to widely used
OpenSSH. The result shows that the required modification
is very small, only involving two functions that belong to
ssh and sshd separately.

To migrate OpenSSH to DPAC, we need to move the
password related operations from ssh to AuthCenter. For-
tunately, these operations are implemented in a single func-
tion, i.e. userauth passwd. The new userauth passwd func-
tion needs to complete the task of calling the DPAC library
to launch AuthCenter and passing messages between Auth-
Center and sshd back and forth.

The original authentication protocol of OpenSSH re-
quires ssh to send the password to sshd. This protocol does
not satisfy the aforementioned principle, because its mes-
sages will reveal the password to ssh. We replace the orig-
inal protocol with a simple HMAC-based protocol. The
client side logic of the protocol is packed into an authen-
tication module, namely pwd hmac.so.

As the authentication protocol changes, sshd also needs
to be modified. For sshd has already used the PAM frame-
work to hide the low-level authentication mechanisms, the

477

modification to sshd is even smaller. We implement the
server side logic of the HMAC-based protocol as a PAM
module, and modified the configuration file to use this mod-
ule. The only modification needed is to rewrite the conver-
sation function, i.e. sshpam passwd conv.

During the process of migrating OpenSSH to DPAC, we
only modified two functions and less than 100 lines of code.
It is a very small portion of OpenSSH, which contains about
58,000 lines of code.

5 Related Work

Kerberos [4, 9] is a widely used centralized authentica-
tion system in distributed environments. An important com-
mon place between DPAC and Kerberos is to keep secrets
in a secure third party. The comparison between them is
shown in Figure 3.

In Kerberos, the Key Distribution Center (KDC) keeps
secrets shared with the application servers. To access the
application server, the client first authenticates itself to
KDC. Then KDC sends the client a ticket that contains a
session key encrypted by the shared secret and can be used
by the client to log in the application server. During the
process, the shared secret does not appear in the client.

In DPAC, the shared secret between AuthCenter and the
server is the user’s password. If an application is going to
access the server, it sends a request to AuthCenter. Then
AuthCenter sends necessary messages on behalf of the ap-
plication to sign in the server. During this process, the pass-
word also does not appear in the application. Therefore to
some extent, DPAC can be viewed as a simplified desktop
version of Kerberos.

The PAM framework [6, 8] is proposed to hide low-level
authentication mechanisms and provide a high-level ab-
straction. In PAM, different mechanisms are implemented
as separate pluggable modules that can be replaced easily.
DPAC also provides the similar flexibility.

PAM does not consider how to defend against malicious
applications that invokes it. PAM modules are loaded into
the address spaces of invoking applications and all their op-
erations and data can be observed by applications. While,
in DPAC, authentication modules are loaded into a separate
password manager (i.e. AuthCenter). They are hidden from
invoking applications.

Password managers provide users with the capability of
managing all passwords with a single tool. To guarantee
the security of passwords, some managers, such as Gnome-
Keyring [5] and Mac OS Keychain [11], encrypt passwords
before they are cached. More secure managers use se-
cure hardware to enhance the security of passwords [12, 1].
However, none of these managers provides the capability of
verifying passwords, so passwords need to be delivered to
applications during authentication.

Pipe Network Network Network

Figure 3. DPAC and Kerberos

6 Conclusion

Some vendors may be reluctant to take enough counter-
measures in their products because of the high development
cost. In this paper we propose a new reuse-oriented pass-
word authentication framework, DPAC, to lower the cost
by moving the responsibility for protecting passwords from
applications to a dedicated manager (i.e. AuthCenter) and
reusing countermeasures for all applications.

We demonstrate the feasibility of DPAC by taking two
example countermeasures, as well as migrating OpenSSH
to DPAC.

References

[1] T. Aron. Client security solutions, October 2004.
[2] M. Bellare, R. Canettiy, and H. Krawczykz. Keying hash

functions for message authentication. In N. Koblitz, edi-
tor, the 16th Annual International Cryptology Conference
on Advances in Cryptology, LNCS 1109, pages 1 – 15, Santa
Barbara, California, 1996. Springer-Verlag.

[3] R. Dhamija and J. D. Tygar. The battle against phishing:
Dynamic security skins. In the 2005 Symposium on Usable
Privacy and Security, pages 77 – 88, Pittsburgh, Pennsylva-
nia, 2005. ACM Press.

[4] J. T. Kohl and C. Neuman. The kerberos network authenti-
cation service (v5), September 1993.

[5] A. Larsson. Proposal for inclusion in desktop: Gnome-
keyring, November 2003.

[6] A. G. Morgan. Pluggable authentication modules for linux.
Linux Journal, 1997(44es), 1997.

[7] B. Ross, C. Jackson, and N. Miyake. Stronger password
authentication using browser extensions. In the 14th Usenix
Security Symposium, pages 17 – 32, Baltimore, 2005.

[8] V. Samar. Unified login with pluggable authentication mod-
ules (pam). In the 3rd ACM conference on Computer and
Communications Security, pages 1 – 10, New Delhi, India,
1996. ACM Press.

[9] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An
authentication service for open network systems. In the Win-
ter 1988 Usenix Conference, pages 191 – 202, Dallas, Texas,
USA, 1988.

[10] TCG. Tcg specification architecture overview, August 2007.
[11] S. d. Vries. Securing mac os x, May 2006.
[12] Wave. Wave systemsembassy trust suite portfolio enables

secure business computing, 2003.

478

