
250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

Energy-Efficient Hardware Data Prefetching
Yao Guo, Member, IEEE, Pritish Narayanan, Student Member, IEEE, Mahmoud Abdullah Bennaser, Member, IEEE,

Saurabh Chheda, and Csaba Andras Moritz, Member, IEEE

Abstract—Extensive research has been done in prefetching
techniques that hide memory latency in microprocessors leading
to performance improvements. However, the energy aspect of
prefetching is relatively unknown. While aggressive prefetching
techniques often help to improve performance, they increase en-
ergy consumption by as much as 30% in the memory system. This
paper provides a detailed evaluation on the energy impact of hard-
ware data prefetching and then presents a set of new energy-aware
techniques to overcome prefetching energy overhead of such
schemes. These include compiler-assisted and hardware-based
energy-aware techniques and a new power-aware prefetch engine
that can reduce hardware prefetching related energy consumption
by 7–11 . Combined with the effect of leakage energy reduction
due to performance improvement, the total energy consumption
for the memory system after the application of these techniques
can be up to 12% less than the baseline with no prefetching.

Index Terms—Compiler analysis, data prefetching, energy effi-
ciency, prefetch filtering, prefetch hardware.

I. INTRODUCTION

I N RECENT years, energy and power efficiency have
become key design objectives in microprocessors, in

both embedded and general-purpose microprocessor domains.
Although extensive research [1]–[9] has been focused on
improving the performance of prefetching mechanisms, the
impact of prefetching techniques on processor energy efficiency
has not yet been fully investigated.

Both hardware [1]–[5] and software [6]–[8], [10], [11]
techniques have been proposed for data prefetching. Software
prefetching techniques normally need the help of compiler
analyses inserting explicit prefetch instructions into the
executables. Prefetch instructions are supported by most con-
temporary microprocessors [12]–[16].

Hardware prefetching techniques use additional circuitry for
prefetching data based on access patterns. In general, hardware

Manuscript received July 16, 2008; revised April 02, 2009. First published
October 23, 2009; current version published January 21, 2011.

Y. Guo is with the Key Laboratory of High-Confidence Software Technolo-
gies (Ministry of Education), School of Electronics Engineering and Computer
Science, Peking University, Beijing 100871, China (e-mail: yaoguo@sei.pku.
edu.cn).

P. Narayanan is with University of Massachusetts, Amherst, MA 01003 USA
(e-mail: pnarayan@ecs.umass.edu).

M. Bennaser is with Kuwait University, Safat 13060, Kuwait (e-mail: ben-
naser@eng.kuniv.edu.kw).

S. Chheda is with BlueRISC Inc., San Jose, CA 95134 USA (e-mail:
chheda@bluerisc.com).

C. A. Moritz is with University of Massachusetts, Amherst, MA 01003 USA
and also with BlueRISC Inc., Amherst, MA 01002 USA (e-mail: andras@ecs.
umass.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2032916

prefetching tends to yield better performance than software
prefetching for most applications. In order to achieve both
energy efficiency and good performance, we investigate the
energy impact of hardware-based data prefetching techniques,
exploring their energy/performance tradeoffs, and introduce
new compiler and hardware techniques to mitigate their energy
overhead.

Our results show that although aggressive hardware
prefetching techniques improve performance significantly,
in most applications they increase energy consumption by up to
30% compared to the case with no prefetching. In many systems
[17], [18], this constitutes more than 15% increase in chip-wide
energy consumption and would be likely unacceptable.

Most of the energy overhead due to hardware prefetching
comes from prefetch-hardware-related energy cost and unnec-
essary L1 data cache lookups related to prefetches that hit in the
L1 cache. Our experiments show that the proposed techniques
together could significantly reduce the hardware prefetching re-
lated energy overhead leading to total energy consumption that
is comparable to, or even less than, the corresponding number
for no prefetching. This achieves the twin objectives of high per-
formance and low energy.

This paper makes the following main contributions.
• We provide detailed simulation results on both per-

formance and energy consumption of hardware data
prefetching.
— We first evaluate in detail five hardware-based data

prefetching techniques. We modify the SimpleScalar
[19] simulation tool to implement them.

— We simulate the circuits in HSPICE and collect statis-
tics on performance as well as switching activity and
leakage.

• We propose and evaluate several techniques to reduce en-
ergy overhead of hardware data prefetching.
— A compiler-based selective filtering approach which re-

duces the number of accesses to prefetch hardware.
— A compiler-assisted adaptive prefetching mechanism,

which utilizes compiler information to selectively apply
different hardware prefetching schemes based on pre-
dicted memory access patterns.

— A compiler-driven filtering technique using a runtime
stride counter designed to reduce prefetching energy
consumption on memory access patterns with very small
strides.

— A hardware-based filtering technique applied to fur-
ther reduce the L1 cache related energy overhead due
to prefetching.

— A Power-Aware pRefetch Engine (PARE) with a new
prefetching table and compiler based location set anal-
ysis that consumes 7–11 less power per access com-

1063-8210/$26.00 © 2009 IEEE

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 251

pared to previous approaches. We show that PARE re-
duces energy consumption by as much as 40% in the
data memory system (containing caches and prefetching
hardware) with an average speedup degradation of only
5%.

Compiler-based techniques for reducing energy overhead
of hardware data prefetching are implemented using the SUIF
[20] compiler framework. Energy and performance impact of
all techniques are evaluated using HSPICE.

The rest of this paper is organized as follows. Section II
presents an introduction to the prefetching techniques we eval-
uated and used for comparison. The experimental framework
is presented in Section III. Section IV gives a detailed analysis
of the energy overheads due to prefetching. Energy-efficient
prefetching solutions are presented in Sections V and VI.
Section VII presents the results. The impact of modifying
architectural framework (out-of-order versus in-order architec-
tures) and cache organization is discussed in Section VIII. The
related work is presented in Section IX, and we conclude with
Section X.

II. HARDWARE-BASED DATA PREFETCHING MECHANISMS

Hardware-based prefetching mechanisms need additional
components for prefetching data based on access patterns.
Prefetch tables are used to remember recent load instructions
and relations between load instructions are set up. These rela-
tions are used to predict future (potential) load addresses from
where data can be prefetched. Hardware-based prefetching
techniques studied in this paper include sequential prefetching
[1], stride prefetching [2], dependence-based prefetching [3]
and a combined stride and dependence approach [21].

A. Sequential Prefetching

Sequential prefetching schemes are based on the One Block
Lookahead (OBL) approach; a prefetch for block is ini-
tiated when block is accessed. OBL implementations differ
based on what type of access to block initiates the prefetch of

. In this paper, we evaluate two sequential approaches dis-
cussed by Smith [22]—prefetch-on-miss sequential and tagged
prefetching.

Prefetch-on-miss sequential algorithm initiates a prefetch for
block whenever an access for block results in a cache
miss. If is already cached, no memory access is initiated.
The tagged prefetching algorithm associates a bit with every
cache line. This bit is used to detect when a line is demand
fetched or a prefetched block is referenced for the first time. In
both cases, the next sequential block is prefetched.

B. Stride Prefetching

Stride prefetching [2] monitors memory access patterns in the
processor to detect constant-stride array references originating
from loop structures. This is normally accomplished by com-
paring successive addresses used by memory instructions.

Since stride prefetching requires the previous address used by
a memory instruction to be stored along with the last detected
stride, a hardware table called the Reference Prediction Table
(RPT), is added to hold the information for the most recently

used load instructions. Each RPT entry contains the PC address
of the load instruction, the memory address previously accessed
by the instruction, a stride value for those entries that have es-
tablished a stride, and a state field used to control the actual
prefetching.

Stride prefetching is more selective than sequential
prefetching since prefetch commands are issued only when
a matching stride is detected. It is also more effective when
array structures are accessed through loops. However, stride
prefetching uses an associative hardware table which is ac-
cessed whenever a load instruction is detected. This hardware
table normally contains 64 entries; each entry contains around
64 bits.

C. Pointer Prefetching

Stride prefetching has been shown to be effective for array-in-
tensive scientific programs. However, for general-purpose pro-
grams which are pointer-intensive, or contain a large number of
dynamic data structures, no constant strides can be easily found
that can be used for effective stride prefetching.

One scheme for hardware-based prefetching on pointer struc-
tures is dependence-based prefetching [3] that detects depen-
dencies between load instructions rather than establishing ref-
erence patterns for single instructions.

Dependence-based prefetching uses two hardware tables. The
correlation table (CT) is responsible for storing dependence in-
formation. Each correlation represents a dependence between a
load instruction that produces an address (producer) and a sub-
sequent load that uses that address (consumer). The potential
producer window (PPW) records the most recent loaded values
and the corresponding instructions. When a load commits, its
base address value is checked against the entries in the PPW,
with a correlation created on a match. This correlation is added
to the CT.

PPW and CT typically consist of 64–128 entries containing
addresses and program counters; each entry may contain 64 or
more bits. The hardware cost is around twice that for stride
prefetching. This scheme improves performance on many of the
pointer-intensive Olden [23] benchmarks.

D. Combined Stride and Pointer Prefetching

In order to evaluate a technique that is beneficial for ap-
plications containing both array and pointer bashed accesses,
a combined technique that integrates stride prefetching and
pointer prefetching was implemented and evaluated. The com-
bined technique performs consistently better than the individual
techniques on two benchmark suites with different character-
istics.

III. EXPERIMENTAL ASSUMPTIONS AND METHODS

In this section, we describe in detail the experimental frame-
work including processor pipeline, benchmarks, cache organi-
zation and leakage mitigation, cache power estimation and our
methods for energy calculation. In the subsequent sensitivity
analysis section, the impact of changing some of these assump-
tions, such as processor pipeline and cache organization is dis-
cussed.

252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

TABLE I
PROCESSOR PARAMETERS

TABLE II
SPEC2000 AND OLDEN BENCHMARKS SIMULATED

A. Experimental Framework

We implement the hardware-based data prefetching tech-
niques by modifying the SimpleScalar [19] simulator. We use
the SUIF [20] infrastructure to implement all the compiler
passes for the energy-aware prefetching techniques proposed in
Sections V and VI, generating annotations for all the prefetching
hints which we later transfer to assembly codes. The binaries
input to the SimpleScalar simulator are created using a native
Alpha assembler. A 1-GHz processor with 4-way issue was
considered. Table I summarizes processor parameters.

The benchmarks evaluated are listed in Table II. The
SPEC2000 benchmarks [24] use mostly array-based data
structures, while the Olden benchmark suite [23] contains
pointer-intensive programs that make substantial use of linked
data structures. A total of ten benchmark applications, five from
SPEC2000 and five from Olden were used. For SPEC2000
benchmarks, we fast forward the first one billion instructions
and then simulate the next 100 million instructions. The Olden
benchmarks are simulated to completion except for perimeter,
since they complete in relatively short time.

B. Cache Energy Modeling and Results

To accurately estimate power and energy consumption in
the L1 and L2 caches, we perform circuit-level simulations
using HSPICE. We base our design on a recently proposed
low-power circuit [25] that we simulated using 70-nm BPTM
technology. Our L1 cache includes the following low-power
features: low-swing bitlines, local word-line, content address-
able memory (CAM)-based tags, separate search lines, and a
banked architecture. The L2 cache we evaluate is based on
a banked RAM-tag design. Memory system parameters are
summarized in Table III.

We fully designed the circuits in this paper for accurate
analysis. CAM-based caches have previously been used in low
power systems and shown to be very energy efficient [26],
[27]. The key difference between CAM and RAM-tag-based
approaches is that the CAM caches have a higher fraction of

TABLE III
MEMORY PARAMETERS

TABLE IV
CACHE CONFIGURATION AND ASSOCIATED POWER CONSUMPTION

their power consumption from the tag check than data array
access. A detailed RAM-tag-based analysis is part of our
future work: we do not expect the prefetching results to be
significantly different although clearly results will vary based
on assumptions such as SRAM blocking of the data array in the
RAM-tag caches as well as applications.

We apply a circuit-level leakage reduction technique called
asymmetric SRAM cells [28]. This is necessary because other-
wise our conclusions would be skewed due to very high leakage
power. The speed enhanced cell in [28] has been shown to re-
duce L1 data cache leakage by 3.8 for SPEC2000 benchmarks
with no impact on performance. For L2 caches, we use the
leakage enhanced cell which increases the read time by 5%, but
can reduce leakage power by at least 6 . In our evaluation, we
assume speed-enhanced cells for L1 and leakage enhanced cells
for L2 data caches, by applying the different asymmetric cell
techniques respectively.

The power consumption numbers of our L1 and L2 caches are
shown in Table IV. If an L1 miss occurs, energy is consumed not
only in L1 tag-lookups, but also when writing the requested data
back to L1. L2 accesses are similar, except that an L2 miss goes
to off-chip main memory [29].

Each prefetching history table is implemented as a 64 64
fully-associative CAM array. This is a typical implementation
of a prefetch history table [30], and is needed for perfor-
mance/prefetching efficiency. HSPICE simulations show that
the power consumption for each lookup is 13.3 mW and for
each update is 13.5 mW. The leakage energy of prefetch tables
are very small compared to L1 and L2 caches due to their small
size (detailed power numbers based on HSPICE are shown in
this paper).

IV. ANALYSIS OF HARDWARE DATA PREFETCHING

We simulated the five data prefetching techniques based on
the experimental framework presented above. Simulation re-

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 253

Fig. 1. Performance speedup: (a) L1 miss rate; (b) IPC speedup.

sults including performance improvement of data prefetching,
the increase in memory traffic due to prefetching and the effect
on energy consumption are thoroughly analyzed.

A. Performance Speedup

Fig. 1 shows the performance results of different prefetching
schemes. Fig. 1(a) shows the DL1 miss-rate, and Fig. 1(b) shows
actual speedup based on simulated execution time. The first five
benchmarks are array-intensive SPEC2000 benchmarks, and the
last five are pointer-intensive Olden benchmarks.

As expected, the dependence-based approach does not work
well on the five SPEC2000 benchmarks since pointers and
linked data structures are not used frequently. But it still gets
marginal speedup on three benchmarks (parser is the best with
almost 5%).

Tagged prefetching (10% speedup on average) does slightly
better on SPEC2000 benchmarks than the simplest sequential
approach, which achieves an average speedup of 5%. Stride
prefetching yields up to 124% speedup (for art), averaging
just over 25%. On the SPEC2000 benchmarks, the combined
prefetching approach shows only marginal gains over the stride
approach. The comparison between miss rate reduction in
Fig. 1(a) and speedup in Fig. 1(b) matches our intuition that
fewer cache misses means greater speedup.

The dependence based approach is much more effective for
the five Olden pointer-intensive benchmarks in Fig. 1; the de-
pendence-based approach eliminates about half of all the L1
cache misses and achieves an average speedup of 27%. Stride
prefetching (14% on average) does surprisingly well on this set
of benchmarks and implies that even pointer-intensive programs
contain significant constant-stride memory access sequences.
The combined approach achieves an average of 40% perfor-
mance speedup on the five Olden benchmarks.

In summary, the combined approach achieves the best per-
formance speedup and is useful for general purpose programs
which contain both array and pointer structures.

Fig. 2. Memory traffic increase for different prefetching schemes. (a) Number
of accesses to L1 data cache, including extra cache-tag lookups to L1; (b)
number of accesses to L2 data cache; (c) number of accesses to main memory.

B. Memory Traffic Increase and Tag Lookups: Major Sources
of Energy Overhead

Memory traffic is increased because prefetched data are not
always actually used in a later cache access before they are
replaced. Useless data in higher levels of the memory hierarchy
are a major source of power/energy consumption added by
the prefetching schemes. Apart from memory traffic increases,
power is also consumed when there is an attempt to prefetch the
data that already exists in the higher level cache. In this case,
the attempt to locate the data (e.g., cache-tag lookup in CAMs
and tag-lookups plus data array lookups in RAM-tag caches)
consumes power.

Fig. 2 shows the number of accesses going to different levels
in the memory hierarchy. The numbers are normalized to the
baseline with no prefetching. On average, the number of ac-
cesses to L1 D-cache increases almost 40% with the combined
stride and dependence based prefetching. However, the accesses
to L2 only increase by 8% for the same scheme, showing that
most of the L1 cache accesses are cache-tag lookups trying to
prefetch data already present in L1.

Sequential prefetching techniques (both prefetch-on-miss
and tagged schemes) show completely different behavior as
they increase the L1 access by about 7% while resulting in a
more than 30% average increase on traffic. This is
because sequential prefetching always tries to prefetch the next
cache line which is more likely to miss in L1.

Main memory accesses are largely unaffected in the last
three techniques, and only increase by 5%–7% for sequential
prefetching.

As L1 accesses increase significantly for the three most ef-
fective techniques, we break down the number of L1 accesses
into three parts: regular L1 accesses, L1 prefetch misses and

254 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

Fig. 3. Breakdown of L1 accesses, all numbers normalized to L1 cache ac-
cesses of baseline with no prefetching.

Fig. 4. Total cache energy consumption in out-of-order architectures with
leakage reduction techniques applied.

L1 prefetch hits as shown in Fig. 3. The L1 prefetch misses are
those prefetching requests that go to L2 and actually bring cache
lines from L2 to L1, while the L1 prefetch hits stand for those
prefetching requests that hit in L1 with no real prefetching oc-
curring.

In summary, from Fig. 3, L1 prefetching hits account for most
of the increases in L1 accesses (70%–80%, on average). The
extra L1 accesses will translate into unnecessary energy con-
sumption.

C. Energy Consumption Overhead

Fig. 4 shows the total cache energy with leakage energy
optimized by the leakage reduction techniques in [28]. The
energy numbers presented for each column include (from
bottom to top): L1 dynamic energy, L1 leakage energy, L2
dynamic energy, L2 leakage, L1 prefetching caused tag-checks,
and prefetch hardware (history tables) energy cost.

As shown in the figure, the dynamic hit energy dominates
some of the benchmarks with higher IPC; however, the leakage
energy still dominates in some programs, such as art, which
have a higher L1 miss rate and thus a longer running time. Al-
though both L1 and L2 cache access energy are significantly

Fig. 5. Energy-aware prefetching architecture for general-purpose programs.

increased due to prefetching, the reduction in static leakage en-
ergy due to performance speedup can compensate somewhat for
the increase in dynamic energy consumption.

Energy consumption for the hardware tables is very signif-
icant for all three prefetching techniques using hardware ta-
bles. On average, the hardware tables consume almost the same
amount of energy as regular L1 caches accesses for the com-
bined prefetching. Typically this portion of energy accounts for
60%–70% of all the dynamic energy overhead that results from
combined prefetching. The reason is that prefetch tables are fre-
quently searched and are also highly associative (this is needed
for efficiency reasons).

The results in Fig. 4 show that on average, the prefetching
schemes still cause significant energy consumption overhead
even after leakage power is reduced to a reasonable level. The
average overhead of the combined approach is more than 26%.

V. ENERGY-AWARE PREFETCHING TECHNIQUES

In this section, we will introduce techniques to reduce the
energy overhead for the most aggressive hardware prefetching
scheme, the combined stride and pointer prefetching, that gives
the best performance speedup for general-purpose programs,
but is the worst in terms of energy efficiency. Furthermore, the
following section (see Section VI) introduces a new power effi-
cient prefetch engine.

Fig. 5 shows the modified prefetching architecture including
four energy-saving components. The first three techniques re-
duce prefetch-hardware related energy costs and some extra L1
tag lookups due to prefetching [29]. The last one is a hardware-
based approach designed to reduce the extra L1 tag lookups. The
techniques proposed, as numbered in Fig. 5, are as follows:

1) compiler-based selective filtering (CBSF) of hardware
prefetches approach which reduces the number of accesses
to the prefetch hardware by only searching the prefetch
hardware tables for selected memory accesses that are
identified by the compiler;

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 255

Fig. 6. Compiler analysis used for power-aware prefetching.

2) compiler-assisted adaptive hardware prefetching (CAAP)
mechanism, which utilizes compiler information to selec-
tively apply different prefetching schemes depending on
predicted memory access patterns;

3) compiler-driven filtering technique using a runtime stride
counter (SC) designed to reduce prefetching energy con-
sumption on memory access patterns with very small
strides;

4) hardware-based filtering technique using a prefetch filter
buffer (PFB) applied to further reduce the L1 cache related
energy overhead due to prefetching.

The compiler-based approaches help make the prefetch pre-
dictor more selective based on program information. With the
help of the compiler hints, we perform fewer searches in the
prefetch hardware tables and issue fewer useless prefetches,
which results in less energy overhead being consumed in L1
cache tag-lookups.

Fig. 6 shows the compiler passes in our approach. Prefetch
analysis is the process where we generate the prefetching hints,
including whether or not to do prefetching, which prefetcher to
choose, and stride information. A speculative pointer and stride
analysis approach [30] is applied to help analyze the programs
and generate the information needed for prefetch analysis. Com-
piler-assisted techniques require the modification of the instruc-
tion set architecture to encode the prefetch hints generated by
compiler analysis. These hints could be accommodated by re-
ducing the number of offset bits. We will discuss how to per-
form the analysis for each of the techniques in detail later.

A. Compiler-Based Selective Filtering (CBSF) of Hardware
Prefetches

One of our observations is that not all load instructions
are useful for prefetching. Some instructions, such as scalar
memory accesses, cannot trigger useful prefetches when fed
into the prefetcher.

The compiler identifies the following memory accesses as not
being beneficial to prefetching.

• Noncritical: Memory accesses within a loop or a recursive
function are regarded as critical accesses. We can safely
filter out the other noncritical accesses.

• Scalar: Scalar accesses do not contribute to the prefetcher.
Only memory accesses to array structures and linked data
structures will therefore be fed to the prefetcher.

This optimization eliminates 8% of all prefetch table accesses
on average, as shown in subsequent sections.

B. Compiler-Assisted Adaptive Hardware Prefetching (CAAP)

CAAP is a filtering approach that helps the prefetch predictor
choose which prefetching schemes (dependence or stride) are
appropriate depending on access pattern.

One important aspect of the combined approach is that it
uses two techniques independently and prefetches based on the
memory access patterns for all memory accesses. Since distin-
guishing between pointer and non-pointer accesses is difficult
during execution, it is accomplished during compilation. Array
accesses and pointer accesses are annotated using hints written
into the instructions. During runtime, the prefetch engine can
identify the hints and apply different prefetching mechanisms.

We have found that simply splitting the array and pointer
structures is not very effective and affects the performance
speedup (which is a primary goal of prefetching techniques).
Instead, we use the following heuristic to decide whether we
should use stride prefetching or pointer prefetching:

• memory accesses to an array which does not belong to any
larger structure (e.g., fields in a C struct) are only fed into
the stride prefetcher;

• memory accesses to an array which belongs to a larger
structure are fed into both stride and pointer prefetchers;

• memory accesses to a linked data structure with no arrays
are only fed into the pointer prefetcher;

• memory accesses to a linked data structure that contains
arrays are fed into both prefetchers.

The above heuristic is able to preserve the performance
speedup benefits of the aggressive prefetching scheme. This
technique can filter out up to 20% of all the prefetch-table
accesses and up to 10% of the extra L1 tag lookups.

C. Compiler-Hinted Filtering Using a Runtime Stride Counter
(SC)

Another part of prefetching energy overhead comes from
memory accesses with small strides. Accesses with very small
strides (compared to the cache line size of 32 bytes we use)
could result in frequent accesses to the prefetch table and
issuing more prefetch requests than needed. For example, if
we have an iteration on an array with a stride of 4 bytes, the
hardware table may be accessed 8 times before a useful prefetch
is issued to get a new cache line. The overhead not only comes
from the extra prefetch table accesses; eight different prefetch
requests are also issued to prefetch the same cache line during
the eight iterations, leading to additional tag lookups.

Software prefetching would be able to avoid the penalty by
doing loop unrolling. In our approach, we use hardware to ac-
complish loop unrolling with assistance from the compiler. The
compiler predicts as many strides as possible based on static in-
formation. Stride analysis is applied not only for array-based
memory accesses, but also for pointer accesses with the help of
pointer analysis.

256 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

Strides predicted as larger than half the cache line size (16
bytes in our example) will be considered as large enough since
they will access a different cache line after each iteration.
Strides smaller than the half the cache line size will be recorded
and passed to the hardware. This is a very small eight-entry
buffer used to record the most recently used instructions with
small strides. Each entry contains the program counter (PC) of
the particular instruction and a stride counter. The counter is
used to count how many times the instruction occurs after it
was last fed into the prefetcher. The counter is initially set to a
maximum value (decided by cache_line_size/stride) and is then
decremented each time the instruction is executed. The instruc-
tion is only fed into the prefetcher when its counter is decreased
to zero; then, the counter will be reset to the maximum value.

For example, if we have an array access (in a loop) with a
stride of 4 bytes, the counter will be set to 8 initially. Thus,
during eight occurrences of this load instruction, it is sent only
once to the prefetcher.

This technique reduces 5% of all prefetch table accesses as
well as 10% of the extra L1 cache tag lookups, while resulting
in less than 0.3% performance degradation.

D. Hardware-Based Prefetch Filtering Using PFB

To further reduce the L1 tag-lookup related energy consump-
tion, we add a hardware-based prefetch filtering technique. Our
approach uses a very small hardware buffer called the prefetch
filtering buffer (PFB).

When a prefetch engine predicts a prefetching address, it
does not prefetch the data from that address immediately from
the lower-level memory system (e.g., L2 Cache). Typically,
tag lookups on L1 tag-arrays are performed. If the data to be
prefetched already exists in the L1 Cache, the request from the
prefetch engine is dropped. A cache tag-lookup costs much less
energy compared to a full read/write access to the low-level
memory system (e.g., the L2 cache). However, associative
tag-lookups are still energy expensive.

To reduce the number of L1 tag-checks due to prefetching,
a PFB is added to store the most recently prefetched cache
tags. We check the prefetching address against the PFB when
a prefetching request is issued by the prefetch engine. If the
address is found in the PFB, the prefetching request is dropped
and it is assumed that the data is already in the L1 cache. If the
data is not found in the PFB, a normal tag lookup is performed.
The LRU replacement algorithm is used when the PFB is full.

A smaller PFB costs less energy per access, but can only filter
out a smaller number of useless L1 tag-checks. A larger PFB can
filter out more, but each access to the PFB costs more energy. To
find out the optimal size of the PFB, a set of benchmarks with
PFB sizes of 1 to 16 were simulated. our results show that an
8-entry PFB is large enough to accomplish the prefetch filtering
task with negligible performance overhead.

PFBs are not always correct in predicting whether the data is
still in L1 since the data might have been replaced although its
address is still present in the PFB. Fortunately, results show that
the PFB misprediction rate is very low (close to 0).

Fig. 7. Baseline design of the hardware prefetch table.

VI. PARE: A POWER-AWARE PREFETCH ENGINE

The techniques presented in the previous section are capable
of eliminating a significant portion of unnecessary or useless
prefetching attempts. However, we have found that the energy
overhead of prefetching is still pretty high, mainly because sig-
nificant power is consumed in accessing the hardware table.

In this section, we propose a new power-aware data
prefetching engine with a novel design of an indexed hard-
ware history table [31]. With the help of the compiler-based
location-set analysis, the proposed design could reduce power
consumed per prefetch access to the engine.

Next, we will show the design of our baseline prefetching
history table, which is a 64-entry fully-associative table that
already uses many circuit-level low-power features. Following
that we present the design of the proposed indexed history table
for PARE. In the next section, we compare the power dissipa-
tions, including both dynamic and leakage power, of the two
designs.

A. Baseline History Table Design

The baseline prefetching table design is a 64-entry fully-as-
sociative table shown in Fig. 7. In each table entry, we store
a 32-bit program counter (the address of the instruction), the
lower 16 bits of the previously used memory address (we do not
need to store the whole 32 bits because of the locality property in
prefetching). We also use one bit to indicate the prefetching type
and two bits for status, as mentioned previously. Finally, each
entry also contains the lower 12 bits of the predicted stride/offset
value.

In our design, we use CAM for the PCs in the table, because
CAM provides a fast and power-efficient data search function.

The memory array of CAM cells logically consists of 64 by
32 bits. The rest of the history table is implemented using SRAM
arrays. During a search operation, the reference data are driven
to and compared in parallel with all locations in the CAM array.
Depending on the matching tag, one of the wordlines in the
SRAM array is selected and read out.

The prefetching engine will update the table for each load
instruction and check whether steady prefetching relationships
have been established. If there exists a steady relation, the
prefetching address will be calculated according to the relation

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 257

Fig. 8. Overall organization of the PARE hardware prefetch table.

and data stored in the history table. A prefetching request will
be issued in the following cycle.

B. PARE History Table Design

1) Circuits in PARE: Each access to the table in Fig. 7 still
consumes significant power because all 64 CAM entries are ac-
tivated during a search operation. We could reduce the power
dissipation in two ways: reducing the size of each entry and par-
titioning the large table into multiple smaller tables.

First, because of the program locality property, we do not
need the whole 32 bits PC to distinguish between different
memory access instructions. If we use only the lower 16 bits of
the PC, we could reduce roughly half of the power consumed
by each CAM access.

Next, we break up the whole history table into 16 smaller
tables, each containing only 4 entries, as shown in Fig. 8. Each
memory access will be directed to one of the smaller tables
according to their group numbers provided by the compiler
when they enter the prefetching engine. The prefetching engine
will update the information within the group and will make
prefetching decisions solely based on the information within
this group. The approach relies on new compiler support to
statically determine the group number.

The group number can be accommodated in future ISAs that
target energy efficiency and can be added easily in VLIW/EPIC
type of designs. We also expect that many optimizations that
would use compiler hints could be combined to reduce the im-
pact on the ISA. The approach can reduce power significantly
even with fewer tables (requiring fewer bits in the ISA) and
could also be implemented in current ISAs by using some bits
from the offset. Embedded ISAs like ARM that have 4 bits for
predication in each instruction could trade off less predication
bits (or none) with perhaps more bits used for compiler inserted
hints.

Note that this grouping cannot be done with a conventional
prefetcher. Without the group partition hints provided by com-
piler, the prefetch engine cannot determine which set should
be searched/updated. In such a case, the entire prefetch history
table must be searched, leading to higher energy consumption.

In the proposed PARE history table shown in Fig. 8, during
a search operation, only one of the 16 tables will be activated.
This is based on the group number provided by the compiler.
We only perform the CAM search within the activated table,

Fig. 9. Schematic for each small history table in PARE.

which is a fully-associative 4-entry CAM array, which is only a
fraction of the original 64-entry table.

The schematic of each small table is shown in Fig. 9. Each
small table consists of a 4 16 bits CAM array containing the
program counter, a sense amplifier and a valid bit for each CAM
row, and the SRAM array on the right which contains the data.

We use a power-efficient CAM cell design similar to [26].
The cell uses ten transistors that contain an SRAM cell and a
dynamic XOR gate used for comparison. It separates search bit-
lines from the write bitlines in order to reduce the capacitance
switched during a search operation.

For the row sense amplifier, a single-ended alpha latch is used
to sense the match line during the search in the CAM array. The
activation timing of the sense amplifier was determined with the
case where only one bit in the word has a mismatch state.

Each word has the valid bit which indicates whether the data
stored in the word will be used in search operations. A match
line and a single-ended sense amplifier are associated with each
word. A hit/miss signal is also generated: its high state indi-
cating a hit or multiple hits and the low state indicating no hits
or miss.

Finally, the SRAM array is the memory block that holds the
data. Low-power memory designs typically use a six-transistor
(6T) SRAM cell. Writes are performed differentially with full
rail voltage swings.

The power dissipation for each successful search is the power
consumed in the decoder, CAM search and SRAM read. The
power consumed in a CAM search includes the power in the
match lines and search lines, the sense amplifiers and the valid
bits.

The new hardware prefetch table has the following benefits
compared to the baseline design:

• the dynamic power consumption is dramatically reduced
because of the partitioning into 16 smaller tables;

• the CAM cell power is also reduced because we use only
the lower 16 bits of the PC instead of the whole 32 bits;

• another benefit of the new table is that since the table is very
small (4-entry), we do not need a column sense amplifier.
This also helps to reduce the total power consumed.

However, some overhead is introduced by the new design.
First, an address decoder is needed to select one of the 16 tables.
The total leakage power is increased (in a relative sense only)
because while one of the smaller tables is active, the remaining
15 tables will be leaking. However, results show that the PARE
design overcomes all these disadvantages.

258 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

2) Compiler Analysis for PARE: This section presents the
compiler analysis that helps to partition the memory accesses
into different groups in order to apply the new proposed PARE
history table.

We apply a location-set analysis pass to generate group num-
bers for PARE after the high-level SUIF passes.

Location-set analysis is a compiler analysis similar to pointer
alias analysis [32]. By specifying locations for each memory
objects allocated by the program, a location set is calculated for
each memory instruction. A key difference in our work is that
we use an approximative runtime-biased analysis [30] that has
no restrictions in terms of complexity or type of applications.
Each location set contains the set of possible memory locations
which could be accessed by the instruction.

The location-sets for all the memory accesses are grouped
based on their relationships and their potential effects on the
prefetching decision-making process: stride prefetching is
based on the relationship within an array structure, while de-
pendence-based pointer prefetching is based on the relationship
between linked data structures.

The results of the location-set analysis, along with type in-
formation captured during SUIF analysis, give us the ability to
group the memory accesses which relate during the prefetching
decision-making process into the same group. For example,
memory instructions that access the same location-set will be
put in the same group, while the instructions accessing the
same pointer structure will also be put in the same group.

Group numbers are assigned within each procedure, and will
be reused on a round-robin basis if necessary. The group num-
bers will then be annotated to the instructions and transferred to
the SimpleScalar simulator via binaries.

VII. RESULTS AND ANALYSIS

This section details the evaluations of all the previously men-
tioned energy-aware techniques. We first show the results by ap-
plying each of the techniques individually; next, we apply them
together.

A. Compiler-Based Filtering

Fig. 10 shows the results for the three compiler-based tech-
niques, first individually and then combined. The results shown
are normalized to the baseline, which is the combined stride and
pointer prefetching scheme without any of the new techniques.

Fig. 10(a) shows the number of prefetch table accesses.
The compiler-based selective filtering (CBSF) works best for
parser: more than 33% of all the prefetch table accesses are
eliminated. On average, CBSF achieves about 7% reduction
in prefetch table accesses. The compiler-assisted adaptive
prefetching (CAAP) achieves the best reduction for health,
about 20%, and on average saves 6%. The stride counter fil-
tering (SC) technique removes 12% of prefetch table accesses
for bh, with an average of over 5%. The three techniques com-
bined filter out more than 20% of the prefetch table accesses
for five out of ten benchmarks, with an average of 18% across
all applications.

Fig. 10(b) shows the extra L1 tag lookups due to prefetching.
CBSF reduces the tag lookups by more than 8% on average;
SC removes about 9%. CAAP averages just over 4%. The three

Fig. 10. Simulation results for the three compiler-based techniques: (a) nor-
malized number of the prefetch table accesses; (b) normalized number of the
L1 tag lookups due to prefetching; and (c) impact on performance.

Fig. 11. Number of L1 tag lookups due to prefetching after applying the hard-
ware-based prefetch filtering technique with different sizes of PFB.

techniques combined achieve tag-lookup savings of up to 35%
for bzip2, averaging 21% compared to the combined prefetching
baseline.

The performance penalty introduced by the three techniques
is shown in Fig. 10(c). As shown, the performance impact is
negligible. The only exception is em3d, which has less than 3%
performance degradation, due to filtering using SC.

B. Hardware Filtering Using PFB

Prefetch filtering using PFB will filter out those prefetch
requests which would result in L1 cache hits if issued. We
simulated different sizes of PFB to find out the best PFB size,
considering both performance and energy consumption aspects.
Fig. 11 shows the number of L1 tag lookups due to prefetching
after applying the PFB prefetch filtering technique with PFB
sizes ranging from 1 to 16.

As shown in the figure, even a 1-entry PFB can filter out about
40% of all the prefetch tag accesses (on average). An 8-entry

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 259

Fig. 12. Power consumption for each history table access for PARE and base-
line designs at different temperatures � C�.

PFB can filter out over 70% of tag-checks with almost 100%
accuracy. Increasing the PFB size to 16 does not increase the
filtering percentage significantly. The increase is about 2% on
the average compared to an 8-entry PFB, while the energy cost
per access doubles.

We also show the ideal situation (OPT in the figure), where all
the prefetch hits are filtered out. For some of the applications,
such as art and perim, the 8-entry PFB is already very close
to the optimal case. This shows that an 8-entry PFB is a good
enough choice for this type of prefetch filtering.

As stated before, PFB predictions are not always correct: it
is possible that a prefetched address still resides in the PFB but
it does not exist in the L1 cache (has been replaced). Based on
our evaluation, although the number of mispredictions increases
with the size of the PFB, an 8-entry PFB makes almost perfect
predictions and does not affect performance [29].

C. PARE Results

The prefetch hardware history table proposed was designed
using the 70-nm BPTM technology and simulated using
HSPICE with a supply voltage of 1 V. Both leakage and
dynamic power are measured. Fig. 12 summarizes our results
showing the breakdown of dynamic and leakage power at
different temperatures for both baseline and PARE history table
designs.

From the figure, we see that leakage power is very sensitive
to temperature. The leakage power, which is initially 10% of the
total power for the PARE design at room temperature (25 C),
increases up to 50% as the temperature goes up to 100 C. This
is because scaling and higher temperature cause subthreshold
leakage currents to become a large component of the total power
dissipation.

The new PARE table design proves to be much more power
efficient than the baseline design. The leakage power consump-
tion of PARE appears to more than double compared to the base-
line design, but this is simply because a smaller fraction of tran-
sistors are switching and a larger fraction are idle. The dynamic
power of PARE is reduced dramatically, from 13 to 1.05 mW.
Consequently, the total power consumption of the prefetch his-
tory table is reduced by 7–11 . In the energy results presented
next, we used the power consumption result at 75 C, which is
a typical temperature of a chip.

Fig. 13. Energy consumption in the memory system after applying different
energy-aware prefetching schemes.

D. Energy Analysis With All Techniques

Fig. 13 shows the energy savings achieved. The techniques
are applied in the following order: CBSF, CAAP, SC, PFB, and
PARE. The figure shows the energy consumptions after each
technique is added.

Compared to the combined stride and pointer prefetching, the
CBSF shows good improvement for mcf and parser, with an
average reduction of total memory system energy of about 3%.

The second scheme, CAAP, reduces the energy consumed by
about 2%, and shows good improvement for health and em3d
(about 5%).

The stride counter approach is then applied. It reduces the
energy consumption for both prefetch hardware tables and L1
prefetch tag accesses. It improves the energy consumption con-
sistently for almost all benchmarks, achieving an average of just
under 4% savings on the total energy consumption.

The hardware filtering technique is applied with an 8-entry
PFB. The PFB reduces more than half of the L1 prefetch tag
lookups and improves energy consumption by about 3%.

Overall, the four filtering techniques together reduce the en-
ergy overhead of the combined prefetching approach by almost
40%: the energy overhead due to prefetching is reduced from
28% to 17%. This is about 11% of the total memory system en-
ergy (including L1, L2 caches, and prefetch tables).

Finally, we replace the prefetching hardware with the new
PARE design and achieve energy savings of up to 8 for the
prefetching table related energy (the topmost bar). After the in-
corporation of PARE, the prefetching energy overhead becomes
very small (top bar, less than 10% for all applications). When
combined with the effect of leakage reduction due to perfor-
mance improvement, half of the applications studied show a
total energy decrease after energy-aware data prefetching tech-
niques applied (12% decrease for health).

E. Performance Aspects

Fig. 14 shows the performance statistics for the benchmarks
after applying each of the five techniques proposed, one after an-
other. We can see that there is little performance impact for the
four prefetch filtering techniques. On average, the three com-
piler-based filtering and PFB only affect the performance bene-
fits of prefetching by less than 0.4%.

On average, PARE causes a 5% performance benefit reduc-
tion compared to the combined prefetching scheme that con-
sumes the most energy. However, the energy savings achieved

260 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

Fig. 14. Performance speedup after applying different energy-aware
prefetching schemes.

Fig. 15. EDP with different energy-aware prefetching schemes.

from PARE are very significant. The proposed schemes com-
bined yield a 35% performance improvement on average com-
pared to no prefetching.

F. Energy-Delay Product (EDP)

EDP is an important metric to evaluate the effectiveness of
an energy saving technique. A lower EDP indicates that the en-
ergy saving technique evaluated can be considered worthwhile
because the energy saving is larger than the performance degra-
dation (if any).

The normalized EDP numbers of the proposed energy-aware
techniques are shown in Fig. 15. All numbers are normalized to
the case where no prefetching techniques are used. Compared to
the combined stride and pointer prefetching, the EDP improves
by almost 48% for parser. On average, the four power-aware
prefetching techniques combined improve the EDP by about
33%.

Six out of the ten applications have a normalized EDP less
than 1 with all power aware techniques applied. Four applica-
tions have a normalized EDP slightly greater than 1. However, it
is important to note that the EDP with PARE is still much lower
than the EDP with the combined prefetching technique for all
applications. This is due to the considerable savings in energy
achieved with minimal performance degradation.

The average EDP with PARE is 21% lower than with
no prefetching. The normalized EDP results show that data
prefetching, if implemented with energy-aware schemes and
hardware, could be very beneficial for both energy and perfor-
mance.

VIII. SENSITIVITY ANALYSIS

In this section, we change the experimental framework
(pipelines, memory organization) and analyze the impact

Fig. 16. Performance speedup for in-order architectures.

Fig. 17. Energy consumption in the memory system after applying different
energy-aware prefetching schemes for in-order architectures.

of hardware prefetching and various energy aware tech-
niques. New experiments include: evaluating the impact of
energy-aware techniques on in-order architectures and the
impact of varying cache sizes. We find that our energy-aware
techniques continue to be applicable in significantly reducing
the energy overhead of prefetching in these scenarios.

A. Impact on in-order architectures

While most microprocessors use multiple-issue out-of-order
execution, many mobile processors use in-order pipelines.
Energy conservation in these systems is of paramount impor-
tance. Therefore, the impact of prefetching and energy-aware
techniques on four-way issue, in-order architectures was exten-
sively evaluated. In these simulations all other processor and
memory parameters were kept identical to Tables I and III, re-
spectively. Fig. 16 shows performance speedup of all hardware
prefetching schemes against a scheme with no prefetching for
in-order architectures. In general, in-order architectures show
similar performance trends as out-of-order architectures with
hardware data prefetching. However, the actual performance
benefits of prefetching are somewhat lesser; average perfor-
mance improvement is around 24% for the combined (stride
+ dependence) approach, compared to 40% for out-of-order
architectures.

Fig. 17 shows the energy savings for in-order execution with
all techniques applied. We see that CBSF, CAAP, SC, and PFB
together improve the total memory subsystem energy by 8.5%.
This is somewhat less than the out-of-order case, where the cor-
responding number was 11%.

As with out-of-order architecture, PARE significantly re-
duces the prefetching related energy overhead compared to
the combined prefetching approach without any energy aware

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 261

Fig. 18. Performance speedup after applying different energy-aware
prefetching schemes (in-order architectures).

Fig. 19. Normalized energy-delay product with different energy-aware
prefetching schemes (in-order architectures).

techniques. In cases where a significant performance improve-
ment was shown (art and perim), the total energy with PARE is
less than with no prefetching due to a significant improvement
in leakage energy. In em3d, health, mst the total energy with
PARE is less than 5% higher than the case with no-prefetching,
implying that almost all prefetch related energy overhead can
be reclaimed using the PARE engine and compiler techniques.

Fig. 18 shows the performance impact for in-order architec-
tures with energy-aware techniques included. For art, perim,
which have the most significant performance improvement, the
compiler techniques have almost no impact on performance.
With all techniques incorporated, the average reduction in
performance benefit from the combined (stride + dependence)
scheme is around 3%–4%. However, the energy savings far out-
weigh the small performance benefit decrease, similar to what
was shown in out-of-order architectures. The PARE scheme
has a 20% speedup compared to the no-prefetching baseline.

Fig. 19 shows the normalized energy delay products for in-
order execution. On average, EDP improves by 40% for PARE
over the combined (stride + dependence) prefetching scheme
for the benchmarks studied. These results indicate that the var-
ious hardware prefetching and energy efficient techniques are
equally applicable to out-of-order as well as in-order architec-
tures.

B. Impact of Larger Caches Sizes

The impact of increasing cache sizes is discussed in this sec-
tion. The experiments detailed here assume 128 kB IL1 and DL1
caches and 1 MB DL2. We estimate the leakage and dynamic
power for these caches based on the following assumptions:

• Leakage Power: Leakage power increases linearly with
cache size, e.g., 128 kB DL1 and IL1 caches consume 4
leakage power compared to a 32 kB cache.

Fig. 20. Impact on energy consumption in the memory system for 128 kB L1
and 1 MB L2—dynamic power scaled by 2�

Fig. 21. Impact on energy consumption in the memory system for 128 kB L1
and 1 MB L2—dynamic power scaled by 3�.

• Dynamic Power: By using cache blocking and maintaining
the same associativity, dynamic power can be subject to
less than a linear increase in relation to cache size. How-
ever, the additional components introduced (e.g., larger de-
coders and wiring) will cause increased power dissipation.
For this analysis, we consider two different dynamic power
estimations: in one case the 128 kB cache dynamic power
is 2 that of the 32 kB cache, and in the other it is 3 .
While the actual power dissipation will depend on circuit
and cache organization, we consider these to be represen-
tative scenarios. We estimate dynamic power for the 1 MB
DL2 in the same fashion.

• Prefetch Tables: Prefetch tables are assumed identical to
ones used in earlier sections and consume the same amount
of power.

Fig. 20 shows the energy consumption for the benchmarks
with all techniques incorporated assuming that dynamic energy
scales by 2 . The average energy savings over the combined
(stride + dependence) approach with all compiler techniques
and PFB is 8%, and 26% with PARE. The energy numbers as-
suming a 3 increase in dynamic power are very similar (see
Fig. 21), PARE improves energy over the combined approach by
23%. However, average total energy with all energy saving tech-
niques in both cases is around 4% higher than the total energy
without prefetching. The primary reason is that leakage energy
improvements are smaller, because performance improvement
of prefetching is diminished (see Fig. 22) due to fewer cache
misses. However, for larger problem sizes, the performance ben-
efits of prefetching are expected to be larger.

262 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2011

Fig. 22. Impact on performance speedup for larger cache size.

IX. RELATED WORK

Compiler-assisted techniques for prefetching have been
explored by various groups. In general, these use profiling as
an effective tool to recognize data access patterns for making
prefetch decisions. Luk et al. [33] use profiling to analyze
executable codes to generate post-link relations which can
be used to trigger prefetches. Wu [34] proposes a technique
which discovers regular strides for irregular codes based on
profiling information. Chilimbi et al. [35] use profiling to
discover dynamic hot data streams which are used for pre-
dicting prefetches. Inagaki et al. [36] implemented a stride
prefetching technique for Java objects. Most of this prefetching
research focuses on improving performance, instead of energy
consumption. Furthermore, our techniques are in the context of
hardware data prefetching.

To reduce memory traffic introduced by prefetching, Srini-
vasan et al. propose a static filter [37], which uses profiling to
select which load instructions generate data references that are
useful prefetch triggers. In our approach, by contrast, we use
static compiler analysis and a hardware-based filtering buffer
(PFB), instead of profiling-based filters.

Wang et al. [38] also propose a compiler-based prefetching
filtering technique to reduce traffic resulting from unnecessary
prefetches. Although the above two techniques have the poten-
tial to reduce prefetching energy overhead, there are no specific
discussions or quantitative evaluation of the prefetching related
energy consumption, thus we cannot provide a detailed compar-
ison with their energy efficiency.

Moshovos et al. proposes Jetty [39], an extension over snoop
coherence that stops remotely-induced snoops from accessing
the local cache tag arrays in SMP servers, thus saving power
and reducing bandwidth on the tag arrays. The purpose of our
hardware filtering (PFB) is also saving power on the tag arrays,
but in a different scenario.

Chen [11] combines Mowry’s software prefetching tech-
nique [8] with dynamic voltage and frequency scaling to
achieve power aware software prefetching. Our hardware-based
prefetching approaches and energy-aware techniques can be
complementary to this software prefetching approach. Further-
more, the scope for voltage scaling is diminished in advanced
CMOS technology generations [40] where voltage margins are
expected to be lower.

X. CONCLUSION

This paper explores the energy-efficiency aspects of hard-
ware data-prefetching techniques and proposes several new

techniques and a PARE to make prefetching energy-aware.
PARE reduces prefetching related energy consumption by
7–11 . In conjunction with a net leakage energy reduction
due to performance improvement, this may yield up to 12%
less total energy consumption compared to a no-prefetching
baseline. While the new techniques may have a very small
reduction in performance benefits compared to a scheme with
prefetching but no energy-aware techniques, they still maintain
a significant speedup (35% in out-of-order, and 20% in in-order
architectures) compared to the no-prefetching baseline, thereby
achieving the twin goals of energy efficiency and performance
improvement.

REFERENCES

[1] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
IEEE Computer, vol. 11, no. 12, pp. 7–21, Dec. 1978.

[2] J. L. Baer and T. F. Chen, “An effictive on-chip preloading scheme to
reduce data access penalty,” in Proc. Supercomput., 1991, pp. 179–186.

[3] A. Roth, A. Moshovos, and G. S. Sohi, “Dependence based prefetching
for linked data structures,” in Proc. ASPLOS-VIII, Oct. 1998, pp.
115–126.

[4] A. Roth and G. S. Sohi, “Effective jump-pointer prefetching for linked
data structures,” in Proc. ISCA-26, 1999, pp. 111–121.

[5] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless content-directed
data prefetching mechanism,” in Proc. ASPLOS-X, 2002, pp. 279–290.

[6] T. Mowry, “Tolerating latency through software controlled data
prefetching,” Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, Mar. 1994.

[7] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger, “Spaid:
Software prefetching in pointer- and call-intensive environments,” in
Proc. Micro-28, Nov. 1995, pp. 231–236.

[8] C.-K. Luk and T. C. Mowry, “Compiler-based prefetching for recursive
data structures,” in Proc. ASPLOS-VII, Oct. 1996, pp. 222–233.

[9] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Memory-system
design considerations for dynamically-scheduled processors,” in Proc.
ISCA-24, 1997, pp. 133–143.

[10] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a
compiler algorithm for prefetching,” in Proc. ASPLOS-V, Oct. 1992,
pp. 62–73.

[11] J. Chen, Y. Dong, H. Yi, and X. Yang, “Power-aware software
prefetching,” Lecture Notes Comput. Sci., vol. 4523/2007, pp.
207–218, 2007.

[12] D. Bernstein, D. Cohen, A. Freund, and D. E. Maydan, “Compiler tech-
inques for data prefetching on the PowerPC,” in Proc. PACT, Jun. 1995,
pp. 19–26.

[13] K. K. Chan, C. C. Hay, J. R. Keller, G. P. Kurpanek, F. X. Schumacher,
and J. Zheng, “Design of the HP PA 7200 CPU,” Hewlett-Packard J.,
vol. 47, no. 1, pp. 25–33, Feb. 1996.

[14] G. Doshi, R. Krishnaiyer, and K. Muthukumar, “Optimizing software
data prefetches with rotating registers,” in Proc. PACT, Sep. 2001, pp.
257–267.

[15] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 12, pp. 24–36, Mar./Apr. 1999.

[16] V. Santhanam, E. H. Gornish, and H. Hsu, “Data prefetching on the HP
PA8000,” in Proc. ISCA-24, May 1997.

[17] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power considerations
in the design of the alpha 21264 microprocessor,” in Proc. DAC, Jun.
1998, pp. 726–731.

[18] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W.
Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoeppner, D. Kruckemyer,
T. H. Lee, P. C. M. Lin, L. Madden, D. Murray, M. H. Pearce, S. San-
thanam, K. J. Snyder, R. Stephany, and S. C. Thierauf, “A 160-MHz,
32-b, 0.5-W CMOS RISC microprocessor,” Digit. Techn. J. Digit.
Equip. Corp., vol. 9, no. 1, pp. 49–62, 1997.

[19] D. C. Burger and T. M. Austin, “The Simplescalar tool set, Version
2.0,” Univ. Wisconsin, Madison, Tech. Rep. CS-TR-1997-1342, Jun.
1997.

[20] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson,
S. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. Lam, and
J. L. Hennessy, “SUIF: A parallelizing and optimizing research
compiler,” Comput. Syst. Lab., Stanford Univ., Stanford, CA, Tech.
Rep.CSL-TR-94-620, May 1994.

GUO et al.: ENERGY-EFFICIENT HARDWARE DATA PREFETCHING 263

[21] Y. Guo, S. Chheda, I. Koren, C. M. Krishna, and C. A. Moritz, “En-
ergy characterization of hardware-based data prefetching,” in Proc. Int.
Conf. Comput. Des. (ICCD), Oct. 2004, pp. 518–523.

[22] A. J. Smith, “Cache memories,” ACM Comput. Surveys (CSUR), vol.
14, no. 3, pp. 473–530, 1982.

[23] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
dynamic data structures on distributed-memory machines,” ACM
Trans. Program. Lang. Syst., vol. 17, no. 2, pp. 233–263, Mar. 1995.

[24] SPEC, “The standard performance evaluation corporation,” 2000. [On-
line]. Available: http://www.spec.org

[25] M. Bennaser and C. A. Moritz, “A step-by-step design and analysis of
low power caches for embedded processors,” presented at the Boston
Area Arch. Workshop (BARC), Boston, MA, Jan. 2005.

[26] M. Zhang and K. Asanovic, “Highly-associative caches for low-power
processors,” presented at the Kool Chips Workshop, Micro-33, Mon-
terey, CA, Dec. 2000.

[27] R. Ashok, S. Chheda, and C. A. Moritz, “Cool-mem: Combining stat-
ically speculative memory accessing with selective address translation
for energy efficiency,” in Proc. ASPLOS-X, 2002, pp. 133–143.

[28] N. Azizi, A. Moshovos, and F. N. Najm, “Low-leakage asymmetric-
cell SRAM,” in Proc. ISLPED, 2002, pp. 48–51.

[29] Y. Guo, S. Chheda, I. Koren, C. M. Krishna, and C. A. Moritz, “Energy-
aware data prefetching for general-purpose programs,” in Proc. Work-
shop Power-Aware Comput. Syst. (PACS’04) Micro-37, Dec. 2004, pp.
78–94.

[30] Y. Guo, S. Chheda, and C. A. Moritz, “Runtime biased pointer reuse
analysis and its application to energy efficiency,” in Proc. Workshop
Power-Aware Comput. Syst. (PACS) Micro-36, Dec. 2003, pp. 1–15.

[31] Y. Guo, M. Bennaser, and C. A. Moritz, “PARE: A power-aware hard-
ware data prefetching engine,” in Proc. ISLPED, New York, 2005, pp.
339–344.

[32] R. Rugina and M. Rinard, “Pointer analysis for multithreaded pro-
grams,” in Proc. PLDI, Atlanta, GA, May 1999, pp. 77–90.

[33] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn,
“Profile-guided post-link stride prefetching,” in Proc. 16th Int. Conf.
Supercomput. (ICS), Jun. 2002, pp. 167–178.

[34] Y. Wu, “Efficient discovery of regular stride patterns in irregular pro-
grams and its use in compiler prefetching,” in Proc. PLDI, C. Norris
and J. B. Fenwick, Jr., Eds., Jun. 2002, pp. 210–221.

[35] T. M. Chilimbi and M. Hirzel, “Dynamic hot data stream prefetching
for general-purpose programs,” in Proc. PLDI, C. Norris and J. B. Fen-
wick, Jr., Eds., Jun. 2002, pp. 199–209.

[36] T. Inagaki, T. Onodera, K. Komatsu, and T. Nakatani, “Stride
prefetching by dynamically inspecting objects,” in Proc. PLDI, Jun.
2003, pp. 269–277.

[37] V. Srinivasan, G. S. Tyson, and E. S. Davidson, “A static filter for
reducing prefetch traffic,” Univ. Michigan, Ann Arbor, Tech. Rep.
CSE-TR-400-99, 1999.

[38] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C.
Weems, “Guided region prefetching: A cooperative hardware/software
approach,” in Proc. ISCA, Jun. 2003, pp. 388–398.

[39] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi, “JETTY: Fil-
tering snoops for reduced energy consumption in smp servers,” in Proc.
HPCA-7, 2001, p. 85.

[40] B. Ganesan, “Introduction to multi-core,” presented at the Intel-FAER
Series Lectures Comput. Arch., Bangalore, India, 2007.

Yao Guo (S’03–M’07) received the B.S. and M.S.
degrees in computer science from Peking University,
Beijing, China, and the Ph.D. degree in computer
engineering from University of Massachusetts,
Amherst.

He is currently an Associate Professor with
the Key Laboratory of High-Confidence Software
Technologies (Ministry of Education), School of
Electronics Engineering and Computer Science,
Peking University. His research interests include
low-power design, compilers, embedded systems,

and software engineering.

Pritish Narayanan (S’09) received the B.E. (honors)
degree in electrical and electronics engineering and
the M.Sc. (honors) degree in chemistry from the Birla
Institute of Technology and Science, Pilani, India, in
2005. He is currently working toward the Ph.D. de-
gree in electrical and computer engineering from the
University of Massachusetts, Amherst.

Currently, he is a Research Assistant with the
Department of Electrical and Computer Engineering,
University of Massachusetts. He was previously
employed as a Research and Development Engineer

at IBM, where he worked on process variation and statistical timing analysis.
His research interests include nanocomputing fabrics, computer architecture,
and VLSI.

Mr. Narayanan was a recepient of the Best Paper Award at ISVLSI 2009.
He has served as a reviewer for IEEE TRANSACTIONS ON VERY LARGE

SCALE INTEGRATION (VLSI) SYSTEMS and the IEEE TRANSACTIONS ON

NANOTECHNOLOGY.

Mahmoud Abdullah Bennaser (M’08) received
the B.S. degree in computer engineering from
Kuwait University, Safat, Kuwait, in 1999 and the
M.S. degree in computer engineering from Brown
University, Providence, RI, in 2002, and the Ph.D.
degree in computer engineering from University of
Massachusetts, Amherst, in 2008.

He is an Assistant Professor with the Computer
Engineering Department, Kuwait University. His re-
search interests include computer architecture, and
low-power circuit design.

Saurabh Chheda received the M.S. degree in computer engineering from Uni-
versity of Massachusetts, Amherst, in 2003.

He is currently the SoC Processor Architect with Lattice Semiconductor,
where he is involved in the research and development of innovative micropro-
cessor architectures for programmable devices.

Csaba Andras Moritz (M’85) received the Ph.D. de-
gree in computer systems from the Royal Institute of
Technology, Stockholm, Sweden, in 1998.

From 1997 to 2000, he was a Research Scientist
with Laboratory for Computer Science, the Massa-
chusetts Institute of Technology (MIT), Cambridge.
He has consulted for several technology companies
in Scandinavia and held industrial positions ranging
from CEO, to CTO, and to founder. His most recent
startup company, BlueRISC Inc, develops security
microprocessors and hardware-assisted security

solutions. He is currently a Professor with the Department of Electrical and
Computer Engineering, University of Massachusetts, Amherst. His research
interests include computer architecture, compilers, low power design, security,
and nanoscale systems.

