
Hybrid Small Class Teaching:
Dividing and Conquering Large Computer Systems Classes

Yao Guo
Peking University
School of EECS

yaoguo@pku.edu.cn

Junlin Lu
Peking University
School of EECS
ljl @pku.edu.cn

Yifeng Chen
Peking University
School of EECS
cyf @pku.edu.cn

Ming Zhang
Peking University
School of EECS

mzhang_cs @pku.edu.cn

Wenxin Li
Peking University
School of EECS

lwx @pku.edu.cn

ABSTRACT
Recent years have witnessed the rapid increase of undergraduate
students in computer science majors. As a result, many computer
science classes have reached hundreds of students, which may
affect the quality of in-class teaching for some courses such as
computer systems. This paper presents our approach in dealing with
this issue with an approach we called hybrid small class teaching,
which combines large class lectures with small class recitation, to
increase the involvement of students and improve the performance
of teaching. We have experimented this approach on an
“Introduction to Computer Systems” course for the past five years
with more than 20 professors involved each year. This paper
presents our experiences and lessons learned through the
experiments with hybrid small class teaching, as well as insights on
how to deal with large classes in similar courses.

CCS Concepts
• Social and professional topics → Computer science education;
Computational science and engineering education;
• Computer systems organization → ;

Keywords
Small class teaching, computer systems course, recitation

1. INTRODUCTION
In recent years, students choosing computer science as their majors
have been increased rapidly. Combined with strong interests in
computer science classes from other majors, many core computer
science courses, such as programming and algorithms, have more
than 300 students in each class. The quick increase of students may
raise challenges in teaching and student performance. Currently, the
typical way to deal with large classes is to split the students into
multiple classes, either parallel classes taught by different
professors in the same semester, or teaching the same courses for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM TUR-C’17, May 12-14, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). 978-1-4503-4873-7/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3063955.3063960

two to three times in each academic year. Although this kind of
approaches work for introductory programming courses, it will be
difficult to find more than a couple of professors to teach more
advanced courses such as computer systems, operating systems, or
computer architecture.

For example, when we first decide to add the course “Introduction
to Computer Systems1” in our curriculum, we found that it is a
comprehensive course involving multiple subjects that appear to be
difficult to many first or second year computer science students. At
the same time, with as many as 7-8 programming projects (labs)
each semester, the course is very heavy and may be impossible to
pass for students with weak backgrounds in computer science.

When the course was first developed in CMU, they realized that the
course is very heavy, so that a recitation session was introduced,
which is administered by TAs to review the key concepts and help
students with difficulties in labs. Although TAs can provide
effective assistance to students and help them understand
knowledge, they are not as experienced as professors and could not
provide in-depth knowledge on various topics in computer systems,
or in wider computer science research areas.

With the support of a government grant2, we decided to introduce a
new approach with “hybrid small class teaching”, in which we split
the course into two main sessions: large class lectures with more
than 100 students, where regular lectures were taught by two
professors covering the key concepts and techniques, and small
class recitation with fewer than 15 students, where each professor
leads the discussion of course materials, helping students with
questions and providing more advanced topics during the process.

The design of the hybrid small class teaching format aims to achieve
the following goals:

 Helping students to get through one difficult comprehensive
course with heavy workload and a variety of topics. Given the
workload and difficulty of the course, if the course was taught
in traditional lecture style with over 100 students in each class,
we predict that as many as 10% of the student may fail the
course if we do not lower the course requirements from the
original course design.

1 The course was first developed by Carnegie Mellon University as CS213:
https://www.cs.cmu.edu/ 213/.
2 “The Test Plan to Cultivate Top-Notch Students in Basic Discipline”

mailto:yaoguo@pku.edu.cn

 Giving students the early opportunity to interact with a
professor early in their program. As many classes become larger
and larger, students do not have the chance to talk to a professor
in many occasions until late in their program when they join a
lab or take a small-size elective course.

 Giving students the chance to give presentation, interact with
students and answer questions. The recitation course is
designed to give students more chance to talk and interact with
each other. For example, a course review on each lecture is
given by a student in the recitation, giving students the
opportunity to prepare presentation and answer questions from
fellow students.

We have successfully experimented with this hybrid small class
format on the Introduction to Computer Systems course in the past
five years. Each year, we have more than 20 professors involving
in the course, either teaching the lectures in large classes, or leading
the recitation in small classes. We will present the background,
course design and evaluation, as well as discussions on what we
have learned through the experiments.

2. BACKGROUND
The course we choose to conduct the experiment is Introduction to
Computer Systems (ICS), a core course for computer science majors.
The course and accompanying textbook was developed by Carnegie
Mellon University more than 15 years ago. Since then, the course
has been adopted by over 100 schools around the world.

The course serves as an introduction to various topics related to
computer systems, including data layout, assembly code, computer
architecture (pipelining), linking, caching, virtual memory,
computer networks and Internet, processes and concurrent
programming.

The major goal of the course is to give the students an overview of
computer systems from a programmer's perspective, such that a
student understands how a program is running on a modern
computer system. In order to achieve this goal, the course has been
designed with heavy workload, which was suggested to be taught
in two semesters, instead of teaching the whole materials (in the
textbook) in one single semester.

One special feature of the course is a set of 7 to 8 programming
projects (labs) designed to help students deeply understand the key
concepts and techniques in the course. Some of the labs are
relatively easy, but some of them may require more than 20 hours
of work in order to get a perfect score. Some labs require the
submission to reach a certain level of performance metrics in order
to gain 100% credit, which increases its difficulty and
competitiveness.

Grading programming projects for hundreds of students would
become an invincible task if not for the Autolab environment that
was designed to handling the submission and grading all lab
submissions in an automated way. Although several labs were not

graded by Autolab originally, we have invested a couple of students
to develop an extension of Autolab such that we are able to
automate the grading process of all labs.

3. COURSE DESIGN

3.1 Overview
Currently, the ICS course is taught in the first semester of the
second year, as a required course to all CS major undergraduate
students.

Figure 1 shows the overall design of the course in the proposed
hybrid small class format. The whole course is composed of two
major components: large class lectures and small class recitations.

In large class lectures, we split all students into two parallel classes
such that each class includes around 120 students. Each session was
taught by two professors, each covering half of the topics. The
lecture sessions were taught in traditional lecture style, with limited
Q&A opportunities.

We then split the students into to multiple small classes with only
13 to 14 students in each class. As a result, we typically have 16 to
20 small classes, depending on the number of students taking the
course each year. Each small class was administered by a professor,
with the assistance of a TA, who is either a graduate student or an
undergraduate student who had taken the course in previous years.

Figure 1: Overview of the course design.

3.2 Course Components
Typically, the small class session includes the following
components:

 Course reviews. In each session, we review the lectures taught
in this week. The review of each lecture was given by a student.

 Homework and lab review. The TA will give an overview of the
homework problems and solutions each week. He/she will also
talk about lab preparation issues and review each lab after it was
completed.

 Questions and discussions. We use small classroom in order to
generate an environment for discussion. Students are told that
their participation in the discussions will be counted in their
scores. Some professors keep a sheet to count the number of
times each student asks/answers questions and convert the
statistics into a part of their final scores.

 Extended topics. Here is the part where each professor can have
some fun, telling stories or giving an overview of their research
if there are free time. For example, a professor can give an
overview of computer security measures when the course
covers buffer overflow, or an overview of computer networking
research when the course covers Internet and proxies.

3.3 Student Allocation
In order to split the students into comparable groups for each small
class, we use a simple algorithm to guarantee that each small class
includes a similar distribution of good students and weak students.

This is important in order to generate discussions because good
students are those who can both answer questions and also ask
insightful questions. At the same time, the students with poor
performances can ask questions and learn from the good students.

We found that the distribution met our design goals as most
professors report that the discussion atmosphere has reached a level
never seen before in other courses with significantly more students.

After the initial year, we also tweaked the allocation algorithm to
make sure each small class includes an equal number of female
students. This also helps improve the class atmosphere with a
healthy distribution of male and female students.

3.4 Professor Selection
Finding more than 20 professors to teach in a class is difficult.
Besides providing the required incentives (which will be discussed
later), we try to find more appropriate professors who are both
interested in teaching and will also benefit from the class in the long
run.

For each large lecture class, we only needs a couple of professors
who can cover the whole content, which should be easy to find.
However, in order to find professors for the small classes, we follow
the following criteria:

 Professors in related subjects, especially who teach follow-up
classes that are related to the course. For example, we include
professors who teach operating systems, compilers, computer
networking, computer architecture, etc.

 Professors who are involved in teaching administration. As this
course is related to many other courses. We include several
professors who serves as undergraduate program directors or
related roles, such that they follow the courses and take notes
for future course reforms.

 Professors who are doing research related to computer systems.
The professors can give the students an overview of the most
recent research topics. This also helps the students as they will
have the chance to meet professors they might work with in the
future.

3.5 Incentives
Many professors in other universities have asked us the same
question: How do you get all the professors to teach the same course?
This comes down to the incentives.

Besides monetary incentives that is coming from a grant, we believe
the professors have the following incentives to join a course like
this:

 Get to know the students in person. It helps the professors
greatly when they need to recruit students to join their labs,
especially if they want to find PhD candidate early in their years.

 Spreading the word on their research. Even the students in the
class might not join the professor's lab, it also helps to talk about
their research.

 Interact with other professors. We arrange regular meetings
after each recitation for the professors to have informal
meetings to discuss the progress, issues with students, or just
chatting for fun. Many professors like this kind of meetings.

During our five-year experiments of this course, only a few
professors quitted after the first year because they were very busy.
Most other professors have been happy and devoted to teach the
course even the monetary incentives are discontinued in the future.

4. EVALUATION
This section presents the results of experimentation, which is
evaluated through student performance, as well as student and
professor responses in our interviews.

4.1 Course Statistics
We have taught this course in this hybrid small class format for five
years. Table 1 shows the basic statistics on this course.

As we can see from the table, the number of students has kept
increasing each year, which indicates that the challenges also
increase in dealing with so many students in CS majors. However,
in our course setup, the only big changes we made is that we split
the large class lectures into two parallel sessions in the year 2013
because the number of students has surpassed 200, which we feel
maybe too many in a single class.

On the small class setup, it is easy to scale as we only need to recruit
one or two new professors each year to keep the number of students
in each small class in the range of 12 to 14 students.

Overall, the only logistics issues we met at the beginning is to
synchronize each small classes and discuss the difficulties students

might face in each week through emails and face-to-face meetings.
The course runs pretty smoothly after the first two years as most
potential issues have been resolved.

Table 1: Course statistics in the past five years.

year # of students # of parallel lectures # of small classes
2012 171 1 14
2013 212 2 16
2014 235 2 18
2015 239 2 18
2016 274 2 19

4.2 Student Performance
It is difficult to measure student performance in a course setup like
this as we did not have this course in the traditional lecture style
before we implement the hybrid small class format. However, the
overall performance of the students can still be used as an indication
of the success of this teaching format.

As we mentioned earlier, the workload of this course is very heavy,
especially after we include the Computer Architecture chapter since
the third year. However, since we have the recitation format to help
the students understand the course and review their performances
during the process, most students have completed the course in a
satisfactory manner.

Figure 2 shows the (cumulative) distribution of scores for each
academic year. Each year, we have a few students (less than 5) who
could not finish or pass the course due to various reasons, including
mental issues and family matters. For those students who have
attended all recitation classes and who have completed all required
elements including home works, labs and exams, only one of them
have failed the course in the first three years.

The average scores each year is also stable, ranging between 75 to
80 points out of a total of 100 points.

In order to check how the student performances in different small
classes might differ, we show the average scores of each small class
in each year in Figure 3 We can see that, for each year, the
difference between each class is within the range of 3 to 8 points,
which may be caused by the differences in individual student
performances, instead of professor teaching performances.

More details on the differences between small classes should be
investigated further with more statistics from a multi-year study.

Overall, we are satisfied with the current status of the hybrid small
class teaching approach. We have already extended the approach on
another course for CS major students, and to other majors in our
school as well.

4.3 Student Responses
Overall, most students have welcomed the format due to various
reasons:

“This is the first time I have the chance to interact with a professor
so often after I entered college.”

“I am very thankful that the school have invested so many
professors in one course, I have the obligation to work hard and
learn it well.”

 “I liked the course review part, as it helped me refresh the lectures.
As it was given by a fellow student, it also covered some topics the
professors didn't explain very clearly in the lectures.”

“The small class discussion really helps solve my questions as they
can be answered by the professor, the TA and my fellow students."

Figure 2: Cumulative distribution for student scores in the past five years.

Figure 3: Average scores for each small class, sorted in descendent order.

“I got to know the students in my small class well and I have made
some friends!”

“It was fun.”

One student praised on the professor in his small class (in an
anonymized survey):

“Professor W was the best. He was very responsible. He explained
every point clearly and he really cares about whether we have
understood the problem or not. I have benefited from the small class
a lot.”

Some students still complained about the workload of the course:

“There were so many topics in the course. I didn't have the time to
understand all of them deeply. For many topics, I only knew that
was presented in the slides.”

One student also mentioned the atmosphere in his small class:

“All those talking in the class are THOSE GOOD students. I didn't
have a chance to join their discussions because I have no clue...”

Another student did not like the course review part:

“The course review was boring as many students just repeated what
was taught in the class lectures.”

4.4 Professor Comments
We have talked to several professors to gather their comments, here
are some representative ones.

Professor Z commented on what the students could learn from the
course:

“Not only could they learn course materials, they can improve their
other qualities such as communication skills through the interaction
with professors and students, and most importantly presentation
skills when they have to present the course review in front of the
whole class.”

He also commented on whether the students have the incentive to
ask questions and join discussions:

“For the students who do not understand some topics, they will of
course ask questions. But even for the good students, they will have
the incentives to answer questions and show off themselves as they
know their participation will be noted by the professors and
increase their scores in the end.”

Professor X noted that he also benefited from teaching the course:

“I got to know the students in my small class very well, to the point
that whether they are suitable for doing research. A couple of them
have later worked in my lab. One of them have continued as a MS
student!”

4.5 Impact on Follow-up Courses
The ICS course also serves as a prerequisite for many follow-up
courses such as compiler, operating systems and computer networks.
As students have gained some first-hand knowledge on the basics
of these follow-up courses, it helped them to understand the follow-
up courses much easily.

Professor B, who taught a follow-up course Computer Networks,
noted that:

“Because the students have basic understandings of computer
network topics such as sockets and TCP/IP, as well as hands-on
knowledge on the implementation of a web proxy, they can grasp
the topics more quickly and also more interested in the course.”

Similarly, Professor G, a compiler course instructor, also
commented that:

“I found the students after taken Computer Systems are better at
understanding the compiler concepts and principles, as they have
been familiar with assembly code and learned how programs run
on a computer from the previous course.”

5. DISCUSSIONS

5.1 Limitations in Evaluation
As the case in many studies regarding course reforming, it is
difficult to evaluate the effect of the change in a more accurate
matter. We have tried to evaluate the approach with students
performances and responses from students and professors.
Although the current evaluation can be used to provide a reasonable
indication of success, we can still improve the evaluation part
further in the future:

 With more data in the future, we are able to provide a more
convincing evaluation on whether this kind of approaches can
provide consistent benefits to students and professors.

 We plan to design a survey that may include both qualitative
and quantitative questions such that more detailed evaluations
can be performed.

 As we do not have a previous edition of the same course taught
in a different format, we cannot compare the results directly.
However, we plan to apply the similar approaches on an
existing course, so we can compare the student performance
data after and before we implement the hybrid small class
teaching approach.

5.2 Applicability to Other Courses
As we mentioned earlier, for introductory courses such as basic
programming in Java or C/C++, it is easier to find more professors
who can teach the course directly in small classes, instead of using
such a hybrid format. For more advanced elective courses, the
number of students tends to be small any way. Thus the most

appropriate courses for this hybrid format are those courses that are
taken by many students, the content of which is difficult for the
students, and teaching the course can benefit a number of professors.

Besides an introductory course on computer systems, we believe
other courses can benefit from this approach as well, such as
algorithms, operating systems, computer architecture and computer
networks, etc.

Currently, we have converted another course Algorithm Design and
Analysis into the hybrid small class format, which was taught in the
following semester, such that each student has the chance to meet
two professors in a small class setting in their first two years.

5.3 Sustainability
Investing so many professors in one course raises the issues on
whether this approach is sustainable. Our current experiments
shows that it is possible to take such kind of approaches because we
have over 100 faculty members in the CS-related departments.

If a department has far fewer professors and fewer students, this
kind of approaches might not be practical as a small number of
students do not need this kind of hybrid approaches.

Nonetheless, if the number of CS students keeps increasing in the
future, many CS departments may face similar issues. If only one
or two core courses can be offered in a hybrid small class format, it
may help the students a lot during their four-year study because they
become familiar with at least a couple of professors. This kind of
hybrid format can also help improve the success rate for students in
difficult courses such as computer systems.

Of course, professors may also need incentives to devote
themselves to teach an extra course, but the workload of professors
can be limited if they follow the course for more than a couple of
years.

6. RELATED WORK
Small class teaching has been advocated as an effective approach to
improve the performance of teaching. It has been studied in high
schools [2], as well as undergraduate students in science and
engineering [6].

In computer science teaching, student engagement [5] is one of the
key factors that may affect success in a particular class. Previous
approaches have shown that techniques such as a linked-courses
learning community can help improve student engagement [4, 1].
Our approach in hybrid small class teaching has also focused on
improve student engagement as the students have no choice but
participate in course discussions in a small classroom.

Many new class formats have been proposed and experimented in
recent years, most notably Massive Open Online Courses (MOOCs)

[3] and Flipped Classrooms [7]. We believe these techniques can
also be incorporated to further improve the small class teaching
format.

7. CONCLUSIONS
We have presented our five-year experiments in applying a hybrid
small class teaching format in order to deal with a large number of
students in difficult CS courses such as computer systems. With a
hybrid format including large class lectures and small class
recitations, it is able to improve student engagement and improve
student success rate. As the students have the opportunity to interact
with a professor in small classes, it may provide other long-term
effects on student-professor relationship as well as increasing
student interests in research.

ACKNOWLEDGMENTS
We thank all the professors who have taught the course, especially
the professors and students who have participated in the interviews.
The project has been supported in part by the grant “The Test Plan
to Cultivate Top-Notch Students in Basic Discipline” from the
Ministry of Education of China. This paper is also partially
supported by the National Natural Science Foundation of China
(NSFC Grant No. 61472006).

REFERENCES
[1] M. Butler, M. Morgan, J. Sheard, Simon, K. Falkner, and A.
Weerasinghe. Initiatives to increase engagement in first-year ict.
In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE'15, pages
308-313, 2015.
[2] B. Nye, L. V. Hedges, and S. Konstantopoulos. The long-term
effects of small classes: A five-year follow-up of the Tennessee
class size experiment. Educational Evaluation and Policy Analysis,
21(2):127-142, 1999.
[3] L. Pappano. The year of the MOOC. The New York Times,
2(12):2012, 2012.
[4] A. Settle, J. Lalor, and T. Steinbach. A computer science linked-
courses learning community. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science
Education, ITiCSE'15, pages 123-128, 2015.
[5] J. Sinclair, M. Butler, M. Morgan, and S. Kalvala. Measures of
student engagement in computer science. In Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE'15, pages 242-247, 2015.
[6] L. Springer, M. E. Stanne, and S. S. Donovan. Effects of small-
group learning on undergraduates in science, mathematics,
engineering, and technology: A meta-analysis. Review of
educational research, 69(1):21-51, 1999.
[7] B. Tucker. The flipped classroom. Education Next, 12(1):82-83,
2012.

