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Abstract. The UI (user interface) state of a mobile application is im-
portant for attackers since it exposes what is happening inside an ap-
plication. Attackers could initiate attacks timely according to this infor-
mation, for example inserting fake GUIs or taking screenshots of GUIs
involving user’s sensitive data. This paper proposes PoWatt, a method
to infer the timing of sensitive UI occurrences by exploiting power side
channels on mobile devices such as smartphones. Based on power traces
collected and power patterns learned in advance, PoWatt applies a pat-
tern matching algorithm to detect target UI occurrences within a series
of continuous power traces. Experiment results on popular Android apps
show that PoWatt can detect sensitive UI loading with an average pre-
cision of 71%(up to 98%) and an average recall rate of 70%(up to 88%)
during offline detection. In real-time experiments for online detection,
PoWatt can still detect sensitive UIs with a reasonable precision and
recall, which can be successfully exploited by real-world attacks such as
screenshot-based password stealing. Finally, we discuss the limitations of
PoWatt and possible mitigation techniques.

Key words: Side channels, power traces, power channels, UI inference, smart-
phones

1 Introduction

Side channel attacks have been studied extensively. The goal of side channel
attacks is gaining confidential information from the targeted computing system,
while leveraging side channels that are not directly revealing sensitive informa-
tion. Previously discovered side channels include timing information [18, 4, 21],
sound [22], shared memory/registers/files between processes [16] and power con-
sumption [8, 15], etc.

Power side channels (or power analysis attacks) have become an important
type of covert side channels. One well-known example of power side channels is
the recovery of an encryption key from a cryptosystem [8, 7]. Messerges et al.
examined both simple power analysis(SPA) and differential power analysis (D-
PA) attacks [14] against the data encryption standard algorithm and managed to
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breach the security of smart-cards using signal-to-noise ratio (SNR) based multi-
bit attack. For mobile systems such as smartphones, researchers have shown that
power information can also be used to infer users’ locations [15].

Goal Overview This paper introduces a new power side channel, which can be
exploited to initiate side channel attacks by inferring UI (user interface) states
on mobile devices such as smartphones. We investigate the feasibility of using
unprivileged power traces to infer sensitive UI states of mobile applications (apps
for short), such that the attacker would learn the exact timing to initiate the
corresponding attacks.

For example, in order to initiate activity hijacking attacks on Android, at-
tackers need to know when the user login UI will be prompted so that they
can intercept the UI state transition and insert fake user login UIs that could
steal user credentials. In our work, we regard the UI states of a mobile app as
the confidential information that the attacker wants to gain through side channel
attacks; while the power traces, as an unprivileged resource, can be used as a side
channel to achieve this goal.

Our Proposal This paper proposes PoWatt (PoW er Attack), a method to in-
fer sensitive UI states based on power traces collected on Android smartphones,
in order to demonstrate the feasibility of power side channel exploitation. Specif-
ically, we investigate the effectiveness of capturing sensitive UI loading events
from power traces collected during app execution.

The key idea of PoWatt is based on the fact that power patterns of each UI
loading even in Android apps has unique features that distinguish it from other UI
loading events. We can study the power patterns of a sensitive UI in advance and
detect its occurrences on another phone based on the learned pattern. PoWatt
is thus designed as a typical pattern matching approach, which involves training
data collection, model training and target UI detection.

During training data collection, we design a method to identify the starting
point of a UI loading event and use automated scripts to collect the power trace
of a target UI. The power traces are collected with a software-based approach
that can read power values from the smartphone profile.

In the model training phase, we generate a prediction model by splitting the
training data into different groups and finding the most accurate parameters to
generate the most matches between these groups. The result of model training
includes fitting curves and accompanying parameters for each sensitive UI .

The detection phase can be conducted either offline or online. In offline de-
tection, we use the trained model to detect the target UI from continuous power
traces collected separately from training data collection. The algorithm detects
matching target UIs with a time window sliding along the time-indexed power
trace. In online detection, the algorithm is the same, while we add the detecting
algorithm running in background in the training phase to reduce its impact on
the power patterns. We carry out real-time experiments by inviting several vol-
unteers to use the above-mentioned apps with our exploitation tool running in
the background.
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Results Overview We perform experiments on four popular Android apps,
include Alipay, Amazon, WeChat, and Word. Most experiments are conducted
on a Nexus 5 smartphone. We collect power traces with automated scripts ma-
nipulating these apps traversing different UIs including the target sensitive UIs,
and detect the occurrences of these sensitive UIs with PoWatt using the trained
models for each app.

In experiments with offline detection, we split the collected data into five
groups and performed five-cross evaluation. Results show that we can achieve an
average precision of about 71% (up to 98%) and an average recall rate of about
70% (up to 88%) to detect given sensitive UIs For online detection, PoWatt
detects 45-85% of the target UI occurrences in real-time cases, with an average
precision of 66%.

The results demonstrate that we are able to infer a target UI state from the
power trace of a running app with a reasonable precision and recall rate, thus it
is practical for attackers to exploit power traces to infer UI states.

Although our approach is not perfect in terms of detection accuracy, it
presents a real threat to user privacy as an attacker is able to detect the pres-
ence of a particular UI with a reasonable successful rate, revealing that attacking
based on power side channel is becoming a practical concern.

2 Background and Motivation

2.1 Power Measurements

The power consumption of a smartphone can be measured with both hardware-
based and software-based methods. Although power measurements based on
hardware meters are very accurate, it is not applicable to real-world scenarios,
thus we use a software-based measurement method to record power traces on a
smartphone.

Power related readings are publicly accessible on most smartphone OSes such
as Android. In general, instant power numbers can be calculated based on voltage
and current readings of BMU (Battery Monitoring Unit)[20]. The battery status
information is accessible by most apps without system-level privilege, as many
mobile apps need to know the battery status to carry out responses such as
saving user context before the battery dies.

The power numbers can be calculated by polling battery status files. Battery
device drivers are required to updating these files in order to provide instant
power numbers of Android system. Within these files, power consumption is
specified in microamps (µA) of current and in microvolts (µV ) of voltage. The
update frequency varies with different devices, ranging from 10 to 100 times per
second.
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Fig. 1: Power traces collected for the log-in UI for the Amazon app through
software-based measurement, in three different runs.

2.2 Distinguishability in Power Patterns

Our study is based on the following hypothesis: different UIs within an app are
distinguishable based on their power patterns since different UIs have different
usage of network communication, calculation tasks and UI rendering.

We use software-based method to measure the user login UI from the Amazon
app running on a Nexus 5 smartphone with Android 6.0. Figure 1 shows the
power traces of the user login UI in three different test runs. We can see that
the power patterns exhibit obvious similarity for the same UI on different test
runs, which makes it distinguishable in a continuous power trace.

Based on the measurement results, we observed the existence of power side
channels that can be used to distinguish between different UI States, which is
potentially exploitable for attackers to infer sensitive UI loading phases such as
user login (password input) UIs. This motivates us to conduct further studies
on the feasibility of exploiting power side channels to infer sensitive UI states.
More details on the measurement study can be found in our earlier work [19].

3 PoWatt Overview

The goal of our study is to demonstrate the feasibility of inferring sensitive UI
states of mobile apps through power side channels on mobile devices. In order
to achieve this goal, we face the following challenges:

– How do we capture the power pattern for a target UI? A user may
visit dozens (or even hundreds) of different UIs when using a mobile app, thus
we need to find a way to specify the particular UI that might be interested to
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Fig. 2: Overview of PoWatt. (Note that the shaded components are used for
real-time online detection only.)

the attacker. We also need to specify the starting and ending points of a UI
loading phase before we learn its pattern.

– How do we detect the occurrence of a target UI based on its power
pattern? Even we have obtained a unique power pattern for a target UI, we
need to find a way to detect the power pattern in a continuous power trace,
as the user will use the app in a continuous manner. Furthermore, the exact
power readings and loading time might vary in different occurrences of the
same UI, even it runs on the same smartphone.

– How do we conduct real-time online detection of the target UI?
Detecting a target power pattern in an offline power trace may be easier to
do, however, performing meaningful attacks typically requires real-time online
detection. Online detection increases the complexity because the detection
mechanism itself also costs considerable power, which may pollute the power
patterns and cause detection to fail.

3.1 Threat Model

In our study, the attacker (i.e., the malicious app) is installed in the same OS
environment with the victim app, which contains some sensitive UIs that might
reveal its secrets, such as login passwords or financial data. The goal of the attack
is to learn the timing of these sensitive UIs when it appears on the screen such
that the attacker can perform further actions to steal the secrets.

We assume that the attacker (i.e., the malicious app) has prior knowledge
on the victim app and the target UI it attempts to detect. For example, the
attacker can install the victim app on another smartphone (preferably of the
same model) and collect the power traces to study the power patterns of the
target UI state, such as a login screen.

When the malicious app is conducting real-time power side channel exploita-
tion, it runs in the background recording the power data while the victim app
runs in the foreground. The malicious app attempts to infer sensitive UI states
of the victim app based on the power trace it collects, initiating further attacks
once it detects the correct timing.
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3.2 Overview of PoWatt

The purpose of PoWatt is to find an effective method to capture the occurrences
of the target UI from a continuous power trace collected from an app. Figure 2
presents an overview of PoWatt, which involves the following main steps.

Training Data Collection The first step is collecting training data. We first
specify a sensitive UI (i.e. the target UI) within the target app, for instance, the
user login UI. Then we run the target app in the foreground and the data col-
lecting program in the background to collect multiple power traces continuously.

In our experiments, we use an automated script to visit different UIs in this
app, with the target UI (e.g., the login UI) visited multiple times during the
process. The result is a continuous power trace that includes the power patterns
of the target UI and other UIs as well.

During online detection, running a real-time pattern matching algorithm in
the background will increase power consumption and affect the pattern matching
accuracy. In order to simulate the same environment as in the detection phase,
we also let the same pattern matching algorithm running in the background
while collecting power data for the training dataset on the target UI for online
detection.

Model Training Based on a subset of the collected power traces (the rest
will be used in testing), we then train a model to identify the target UI. These
power traces are basically time-indexed power numbers recording the occurrence
of the target UI. In order to obtain the fitting curve, we first apply several pre-
processing steps including calculating an average curve and smooth the data
with moving average to eliminate noises.

After pre-processing, we split the training data into two separate sets. We
first calculate a fitting curve with one part of the training data and use it to
detect the target UI in the rest of the data. We use a simple genetic algorithm
to find the parameters that yield the best overall accuracy (considering both
precision and recall). These fitting curves and accompanying parameters will be
used to conduct the detection in the next phase.

UI Inference We perform both offline and online detection to demonstrate the
possibility of detect the target UI while exploiting the power side channel.

For offline detection, we use the model trained with training data to detect
the target UI in the testing data. We apply a time-window based pattern match-
ing algorithm with the trained model. Offline detection is used to demonstrate
the feasibility of power trace exploitation, thus we do not run the detection
algorithm in real-time to prevent it from polluting the power trace.

We also perform online detection in a more realistic environment, where the
detection algorithm runs in the background on a smartphone to detect the target
UI, which runs in the foreground. Because the detection algorithm also consumes
power, we run the power trace collection and training process again, with the
detection algorithm running in the background. Thus we will have similar power
patterns during training and detection. The detection algorithm is the same as
used in offline detection.
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4 PoWatt Design

4.1 Data Collection

Target UI Specification Mobile apps are composed of different UI components
(i.e., Activities in Android). In a single app, the user typically navigates through
multiple UIs to use some specific app functionality. In Android, current and past
UIs are saved and maintained in a stack data structure called a Back Stack. When
a new UI is loaded, it is pushed on the top of the stack. If the current UI has
a “parent” UI (e.g., the UI has a “back” button), it gets popped out the stack
when the user returns to its “parent” UI. As a result, when the loading process
of some specific UI happens, there are two possibilities of the trigger source: (1)
the user creates a new instance of the UI; (2) the user navigates back from one
of its “children” UIs.

A typical UI loading process in the Android framework works as follows:
(1) The ActivityManager component calls performLaunchActivity() API;
(2) the onCreate() or onPause() function (both of them are implemented by
the app) gets called depending on the source of trigger; (3) After that, the
performTraversal() API is called, in which the loaded UI will be put into the
framebuffer and the screen gets repainted; (4) Finally, if the UI is newly created,
it will be pushed into the Back Stack, and the current one will be destroyed; if
the UI is the parent of the current one and it gets resumed, the current one will
be popped out and destroyed.

Each UI loading process is unique because it involves loading different re-
sources in different sequences, and showing different color schemes on the screen.

We modify the Android framework to record power traces of the tar-
get UI. When we record the power trace of each UI loading, we use the
performLaunchActivity() API calling point as the starting point a UI pro-
cess, and monitor it until the completion of the performTraversal() API.

Power Data Polling and Calculation We collect the power numbers of the
target UI to form a power trace, which is used to reflect its power characteristics.
To collect the power numbers, we use the built-in software-based measuring
method. Instant current and voltage numbers can be acquired by polling system
battery status files.

Adaptation for Online Detection The above procedure works well for offline
detection of the target UI in a continuous power trace. However, when we try
to conduct online detection, the detection algorithm itself consumes significant
power, which affects the power consumption patterns of the target app.

In order to minimize the influences of the online detection algorithm, we run
the algorithm in the background when we collect the training power data. In this
way, we simulate the same environment as in the detection phase while collecting
power data for the training dataset on the target UI.

4.2 Model Training

During model training, our goal is to generate a representing power pattern
(i.e., fitting curves) and accompanying parameters (thresholds), which is used
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to identify the target UI in a power trace during the detection phase. In our
study, we generate the fitting curve based on the power consumption time series
TS1, TS2, ..., TSn extracted from the power traces, which contains n runs of the
loading phase of the target UI .

After collecting the training dataset, we first calculate an average power pat-
tern based on the set of different power patterns (TS1, TS2, ..., TSn) for the same
UI, and then apply a Gaussian filter to smooth the power curve by calculating
their moving average. The result is the main fitting curve (FC).

As a supplement to the power traces, we also calculate a power differential
series (DS) that considers the difference of the power numbers in each adjacent
pairs in the trace. For each TSi = p1, p2, ..., pn, its corresponding DSi is calcu-
lated as p2 − p1, p3 − p2, ..., pn − pn−1. We calculate the average DS and apply
the same Gaussian filter to smooth the curve. The resulting differential curve
(FC ′) is used to represent the power trend for the target UI, which we consider
as an important supplement to the main fitting curve.

For the generated fitting curve FC, we then calculate the distance of each
power pattern to the fitting curve, and use the average distance as the threshold
(Th). For the differential curve FC ′, we calculate a threshold (Th′) using the
same method.

We can use either fitting curve and the corresponding threshold to detect the
target UI in a continuous power trace. However, we want to train a model that
involves both fitting curves to achieve better accuracy. For each time series TSi,
we add two parameters P1 and P2, and use the following criteria to determine
whether is a match:

Sigmoid(Dist(TSi,FC)
Th + P1 × Dist(DSi,FC′)

Th′ ) > P2

where P1 and P2 will be trained using a simple genetic algorithm to maximize
the F-Measure value:

F Measure = 2 × precision×recall
precision+recall

When calculating distances between two time series, we use the square of
the actual distance, since the Euclidean norm is better than Manhattan norm
in terms of preventing overfitting.

We use a sliding window approach as shown in Figure 3 to detect whether
there is positive match in a power trace based on the above criteria. Once we
detect the match, the sliding window will jump to the end of the match and
continue. The matching algorithm is the same as used later in the UI inference
step. The parameters P1 and P2 will be initially set as a number from (0.2, 0.5)
and (0.5, 0.7), respectively. For the genetic algorithm, we generate 200 instances
for each generation and train them over 10 generations, in order to find the best
possible parameters (P1 and P2).

Please note that the model training process for online detection is the same
as for offline detection. The only difference is that the power traces used when
training for online detection include the power consumption of the detection
algorithms running in the background.
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Fig. 3: The workflow of the UI detection algorithm.

4.3 UI Inference

In the UI Inference phase, PoWatt applies the same detection algorithm as used
in training based on the fitting curves (FC and FC ′), the thresholds (Th and
Th′), and the trained parameters (P1 and P2), to detect whether there is a match
to the target UI in the testing power trace.

Offline Detection For offline detection, the goal is to identify the occurrence
of the target UI in a continuous power trace in an offline manner, after we record
the power trace.

The detection process is depicted in Figure 3. We create a time window along
the time series with window size equaling the longest power pattern for the target
UI during traning. Then we apply the detection algorithm mentioned earlier to
repeatedly calculate the distance between the fitting curves and the times series
in the current window. We find a match when the distances satisfy the given
criteria for the trained parameters and thresholds.

Without real-time background noises, offline detection can demonstrate the
capability of PoWatt to detect the target UI in ideal situations.

Online Detection The method we adopt in online detection is the same as
in offline detection. However, because we apply pattern matching in real-time,
it adds extra power consumption to the power trace, such that we need to re-
train the model with the power traces collected with the detection algorithm
running in the background. Fortunately, the detection algorithm itself is not
power hungry and its power consumption patterns is regular. Thus we are still
able to find a power pattern to match the target UI even with detection in the
background.

Online detection will be performed by volunteers, such that we can demon-
strate the capability of PoWatt to detect sensitive UIs in real scenarios.



10 Yao Guo et al.

Table 1: Details of the mobile apps used in our experiments.

App Version Category Target UI

Alipay 9.5.3 Payment password input

Amazon 6.4.0.100 Shopping Log in

WeChat 6.3.15 Communication password input

Word 1.0.1 Productivity Log in

Table 2: Power trace specification in each automated script. (We ran the same
script five times during data collection.)

App # of Unique UIs Target UIs Other UIs

Alipay 9 20 100

Amazon 11 20 100

WeChat 10 20 100

Word 9 20 100

5 Experiments and Results

5.1 Experimental Setup

In our experiments, we choose four popular Android apps from including Alipay,
Amazon, WeChat and Word. Details of these apps are shown in Table 1. We
consider the user login or payment password input UI of each app as the target
UI, as attackers may try to steal user passwords from these apps. We use a Nexus
5 smartphone with Android 6.0 for most of our experiments.

For each app, we write an automated UI testing script based on a tech-
nique for building test cases for Android apps [10]. We do not use the popular
MonkeyRunner here since it requires adb connection, which will result in big in-
fluence on the power patterns. Within each automated UI testing script, we try
to reach multiple UIs while achieving the desired number of occurrences (20 in
each trace) of the target UIs.

Table 2 shows the power trace statistics. For each app, we include 20 oc-
currences of the target UI, as well as 100 occurrences of other UIs (including
different unique UIs as list in the table). We use the automated scripts to collect
five traces for each app.

For offline detection, we use these automated UI testing scripts to generate
5 power traces for each app, then we conduct five-cross evaluation, each time
using four power traces as training data and the remaining power trace as the
testing data. We train a model with the four training power traces and use the
model to predict target UIs in the testing trace. Offline detection is performed
on a desktop PC with the power traces.

In order to evaluate the effectiveness of real-time online detection, we in-
vite volunteers from our lab to use the apps listed in Table 1 on the Nexus 5
smartphone.

With the online detection program running in the background, all the partic-
ipants are trained to perform two different tests: one using a given UI sequence
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Table 3: UI Inference results for offline detection on collected power traces. We
show five-cross examination results, and their average.

App
Run #1 Run #2 Run #3 Run #4 Run #5 Overall

prec. recall prec. recall prec. recall prec. recall prec. recall prec. recall

Alipay 64% 80% 68% 85% 65% 85% 67% 80% 55% 85% 64% 83%

Amazon 43% 50% 55% 55% 68% 65% 79% 55% 57% 20% 60% 49%

WeChat 56% 70% 67% 50% 67% 60% 58% 90% 62% 40% 62% 62%

Word 91% 100% 100% 90% 100% 100% 100% 55% 100% 95% 98% 88%

which is the same as the in the automated test script; the other asking the volun-
teer to visit different UIs inside each app with randomized order and number of
visits. In both tests, they are asked to visit the target UIs (login UIs) for exactly
20 times. Each participant has 10 minutes to finish the experiments. If a positive
matching of the target UI is detected, a notification will be pushed on top of
the screen in the notification area to remind the user. We ask all participants to
count the number of total positive detection notifications, and whether it is a
true positives (or false positive).

5.2 Results and Analysis

Offline Detection Table 3 shows the results of UI inference during offline
detection. We perform five-cross evaluation with the five power traces collected
for each app. The results include the precision and recall numbers in each test,
as well as their average value.

We can see that the Word app has the best overall result in both precision
and recall of 98% and 88%, respectively. The reason is because the long in UI of
the Word app is implemented as a webpage in WebView, thus its loading time is
relatively long. A long loading time will expose more features of the target UI,
thus increasing the detection accuracy. For the other three apps, their detection
precision are all at about 60%, which is acceptable. In all four apps, Amazon
fares the worst with an average recall of only 49%.

Although the results still have space for improvement, they are good enough
to be used in meaningful attacks as attacks do not have to be successful every
time. We have accomplished our goal to demonstrate the effectiveness of inferring
UI states exploiting a power side channel.

Online Detection Table 4 shows online detection results following the same UI
sequences as in the automated scripts. Because there are no new UIs introduced
during the test, the detection accuracy remains comparable to what we have as
for offline detection. On average, we are able to detect the target UI in real-time
with an average precision of around 66% and an average recall rate of 59%. The
highest detecting precision and recall is on the Word app with 94% and 85%,
respectively.

We then show online detection results with random UI sequences in Table 5.
The average precision now drops to 43% while the average recall drops to 54%.

Although both the precision and recall rates are lower than those from the
previous power trace study, this is expected because real-time pattern matching
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Table 4: Results of online detection (on a Nexus 5 smartphone with Android
6.0). The volunteers followed the UI sequence in the automated script.

App Unique UIs Target P FP Prec. Recall

Alipay 9 20 16 6 63% 50%

Amazon 11 20 18 7 61% 55%

WeChat 10 20 20 11 45% 45%

Word 9 20 18 1 94% 85%

Table 5: Results of online detection (on a Nexus 5 smartphone with Android
6.0). The volunteers were free to click as many different UIs as possible.

App Unique UIs Target P FP Prec. Recall

Alipay 45 20 29 20 31% 45%

Amazon 25 20 25 18 28% 35%

WeChat 23 20 26 17 35% 45%

Word 12 20 23 5 78% 90%

brings instability to the power patterns. However, even with the Amazon app,
we are still able to detect the timing of user login with a one in three chance.
Even there is a 72% chance that we might mispredict, we are still able to perform
meaningful attacks with a reasonable success rate.

6 Case Study

To show that our methodology in PoWatt can pose real-world threats on s-
martphones, we present a case study of a real-world attack exploiting power
side channels. The attack we demonstrate here is a screenshot-based UI attack,
which is introduced in ScreenMilker [11]. The attackers could steal user pass-
words through this attack on smartphones.

We assume that the attack happens in an environment of common configu-
rations where the Android OS does not have be compromised and the malicious
app is a totally legit non-system app with no extra permissions needed (we may
need the “network” permission to broadcast the attacking results, but it is in fact
unnecessary). The malicious app and the victim app are co-installed on the same
Android OS, and our case study show that the malicious app could successfully
steal confidential information from the victim app with the hints provided by
PoWatt.

We assume that the attacker has prior knowledge of the victim app and has
already generated a detection engine using the online detection model training
techniques described in PoWatt. The malicious app then runs in the background
and collects the power trace continuously in real-time. While collecting the power
data, it continuously applies real-time detection to check whether the user has
attempted to load the target UI (login UI in this example). Once it detects that
the login UI has been loaded, the malicious app starts to take screenshots of the
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Fig. 4: The attacker steals user credentials by continuously taking screenshots
of the Alipay login UI after detecting the timing of its loading.

victim app in order to steal sensitive information (i.e., username or passwords)
from it.

We implemented our attack on a Nexus 5 smartphone and choose the Alipay
app as our victim app. Alipay is a popular mobile payment app with multiple
functions including payment, money transfer and investment. We consider the
user passwords of Alipay app to be highly sensitive.

Figure 4 shows the screenshots taken in our case study. Once the malicious
app detects the loading of the user login UI, it will continuously take screenshots
of the victim app. With the default prompt of the keyboard animation on tapped
keys, the attacker is able to steal the user’s Alipay password (“mypw”). Attack-
er could achieve this either programmatically with some graphical recognition
algorithms or manually with full images acquired.

Although the attack is pretty straightforward to apply, the most important
thing in the attack procedure is that the attacker has to know when to start
taking screenshots. Although the login UI for the Alipay app is not guaranteed
to be detected each time it loads, with several more attempts, the attacker will
eventually get the chance to detect the occurrence of the target UI and capture
the desired passwords successfully.

Please note that in this attacking example, the malicious app requires extra
permissions to take screenshots, which is not considered a very sensitive per-
mission in Android as many apps are allowed to perform the action. However,
when the seemingly innocuous privilege is exploited together with power side
channels, the attacker can successfully steal sensitive information from the apps.

7 Discussions

Threats to Validity We have demonstrated that we are able to infer sensitive
UI states with power side channels and perform real-time attacks to steal user
information. There are a few limitation of this work that might affect its validity.

Power side channels might only be distinguished for a limited set of UI opera-
tions whose power patterns are consistent each time it is loaded. Some other UIs
might exhibit different power patterns each time it is loaded. For example, an
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image display app may consume different power while loading image thumbnails
if the number of images it processes are different. Fortunately, we observe that
sensitive UIs involving login passwords or financial data are typically stable and
exhibit unique power patterns.

Possible Mitigations In order to protect users from power side channel at-
tacks, we could make modifications to mobile apps or the OS itself.

– Energy obfuscation through code injection. One straightforward miti-
gation approach is that we can inject meaningless code into mobile apps while
performing sensitive user interactions, in order to insert power bursts into its
power pattern to make it unpredictable. This can be achieved at the source
code level during the app development process, or through instrumentation to
the bytecode for app binaries.

– Randomly changing display/color parameters. One interesting feature
for the OLED or AMOLED displays used for smartphones is that it consumes
different power when different color schemes are used [5]. Thus we can vary the
displaying color and other parameters each time the sensitive UI is displayed
on the screen. This could be achieved during app development or through
bytecode instrumentation [9].

– Raising the privilege needed to access power files. Of course, we can
always make the power information privileged, such that not all apps could
access these data directly. As a matter of fact, mobile apps probably do not
need to read low-level power related files containing raw voltage or current
readings. The only thing that most apps need to know is how much battery
is still remaining, which should not pose serious threats as a side channel.

8 Related Work

8.1 Power Side Channels

Power analysis attacks (or power side channels) [1] have become an important
type of side channel attacks in recent years. One well-known example of pow-
er analysis is the recovery of an encryption key from a cryptosystem [8, 7].
Messerges et al. [14, 13] examined both simple power analysis(SPA) and differ-
ential power analysis (DPA) attacks against the data encryption standard (DES)
algorithm and managed to breach the security of smart-cards using the proposed
signal-to-noise ratio (SNR) based multi-bit attack.[12]

On mobile platforms, Michalevsky et al. proposed PowerSpy [15], which in-
vestigates the relation between signal strength and the power pattern of the s-
martphone and showed that they can infer smartphone users’ whereabouts based
on the power traces.

Our work also focuses on the mobile platform, but we have presented a dif-
ferent and more general attack in UI state inference based on power traces.
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8.2 UI-based Attacks

The UI security of an application has been studied extensively [17, 3, 6]. On
traditional desktop platforms, UI-based attacks are basically categorized as UI
spoofing attacks [3, 6]. Recently, UI-based attacks start to emerge on mobile
platforms. For example, ScreenMilker [11] can take screenshots of the foreground
app covertly and steal user credentials.

Chen et al. propose an attack on the Android platform called UI inference
attack [2]. They use the share-memory side channel to infer UI states, in order
to detect the correct timing for attacks. Our work targets at a similar attack in
UI inference, but we have achieved it through power side channel exploitation.

9 Conclusions

In this paper, we present PoWatt, a method that demonstrates the existence of
a new side channel to infer UI states of mobile apps: the power side channel.
Attackers can infer the UI states of a mobile app in the foreground with an
un-privileged app running in the background, which helps to identify the timing
of attacking on sensitive user inputs or screen outputs based on power traces.

The results demonstrate that we are able to infer a target UI state from the
power trace of a running app with a reasonable precision and recall rate, thus
it is practical for attackers to exploit power traces to infer UI states. Although
this study on power side channels is only a small step towards understanding the
power side channel issues on mobile devices, it shows that there are new ways
to perform attacks based on unprotected power information. More studies are
needed to investigate its potential damages and possible mitigation techniques.
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