
Collaborative Privacy Management:
Mobile Privacy Beyond Your Own Devices

Yao Guo, Lin Zhang, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
{yaoguo, zhanglin08, cherry}@sei.pku.edu.cn

ABSTRACT
As the development of mobile devices and applications,
mobile privacy has become a very important issue. Current
researches on mobile privacy mainly focus on potential leak-
ages on a particular device. However, leakage of sensitive
data on a mobile device not only violates the privacy of the
phone (or data) owner, but also violates the privacy of many
other people whose information are contained in the data
directly or indirectly (they are called data involvers). To
address such problems, we introduce a collaborative privacy
management framework, which aims to provide fine-grained
data privacy protection for both data owners and data in-
volvers in a distributed manner. Based on individual privacy
policies specified by each user, a collaborative privacy policy
is generated and enforced on different devices automatically.
As a proof-of-concept prototype, we implement the proposed
framework on Android and demonstrate its applicability
with two case studies.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Access controls

Keywords
Privacy protection; mobile systems; Android; collaborative

1. INTRODUCTION
Mobile devices such as smartphones have become ubiq-

uitous, while mobile applications (apps for short) are de-
veloped at a dramatic speed. The number of mobile apps
from Apple App Store and Google Play (Market) have both
exceeded one million from 2013.
Mobile apps bring us attractive functionalities, while in-

troducing various new privacy threats [7]. Smartphones
often carry sensitive data or private information, such as
contacts, personal messages, locations, or even financial
data. Most mobile apps request to access a subset of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SPME’14, September 11, 2014, Maui, Hawaii, USA.
Copyright 2014 ACM 978-1-4503-3075-6/14/09 ...$15.00.
http://dx.doi.org/10.1145/2646584.2646590 .

sensitive information, in order to function correctly and
provide various functionalities to smartphone users.

Mobile systems such as Android protect private infor-
mation using the permission label mechanism. Every app
applies for a list of permissions (during installation) to access
the data in the system. For example, if an app needs to
access the “fine” location of a smartphone device, it will
request the ACCESS FINE LOCATION permission. The
user will have to allow the permission while the app is
installed. In newer versions of Android, the permissions of
each app can also be re-assigned after installation.

However, the permission label system on Android is not
adequate to prevent information leakage. Many researches
have been focused on studying and improving data pri-
vacy on smartphones, including both static and dynamic
techniques. Static techniques such as Kirin [3] report the
existence of dangerous permission combinations by analyz-
ing the Android Manifest files of Android apps. Similarly,
another static technique PiOS [1] analyzes data flows in iOS
applications to detect possible leaks of sensitive information
from a certain mobile device to untrusted third parties.

Dynamic analysis, especially for the purpose of informa-
tion flow analysis, has been extensively studied in recent
years, such as TaintDroid[2], AppFence[4], TISSA[9]. These
techniques first mark various sensitive information as taint
sources, and then study their propagations among mobile
apps and system services in order to identify potential leaks.

1.1 Privacy Beyond Your Own Devices
Current privacy protection approaches are mainly focused

on the phone itself, including analyzing and protecting
mobile apps, the Android OS and its middleware framework.
However, in the mobile era, protecting one’s privacy is
beyond protecting his/her own device, because many private
information about one person could be stored and accessed
on many other devices owned by different people.

One of our observations on smartphones is that it carries
sensitive data not only from the phone owners, but also data
from many other people. For example, in your contact list,
you can find phone numbers, email addresses of many other
people. In your photo album, there are many photos of other
people you took with your phone. The potential leakage of
these information might not only violate your own privacy,
but also the privacy of many other people (here we call them
data involvers, in comparison to data owners).

1.2 A Motivating Example
As shown in Figure 1, Alice’s phone has applied strong

security protection techniques so that the phone number

25

David

Contacts

Alice:1-234-xxx

Bob:1-234-xxx

David:1-234-xxx

Spyware

Carl

Freeware

Ad Service

Bob

Contacts

Alice:1-234-xxx

Carl:1-234-xxx

David:1-234-xxx

Normal App

Backup

Service

Backup

Service

Alice

Contacts

Bob:1-234-xxx

Carl:1-234-xxx

David:1-234-xxx

Normal App

Corp. Server Ad Server

Developer

Contacts

Alice:1-234-xxx

Bob:1-234-xxx

David:1-234-xxx

Contacts

Alice:1-234-xxx

Bob:1-234-xxx

David:1-234-xxx

Contacts

Alice:1-234-xxx

Bob:1-234-xxx

David:1-234-xxx

Contacts

Alice:1-234-xxx

Carl:1-234-xxx

David:1-234-xxx

Figure 1: A motivating example: privacy leakages
through Friends

information on her phone can not be acquired by third
parties, such as malicious developers, Ad-lib providers and
so on. Unfortunately, her phone number is not only located
within Alice’s phone, but also distributed among many
phones of her friends. As a result, potential privacy risks
could take place due to various reasons:

• Bob backs up his messages to a (insecure) cloud for
archiving purpose;

• Carl grants an ad-supported app permissions to access
messages;

• David installs a spyware (unintentionally), which col-
lects all kinds of personal information, including phone
numbers in the contact list.

We use leakages through friends to describe privacy leak-
ages similar to the above scenario.

1.3 Key Ideas
We argue that in order to enhance the privacy of mobile

applications on smartphones, all people involved should
work collaboratively. Everyone has a responsibility to apply
security measures to protect your phone and also honor
other people’s privacy requirements if their data reside on
your phone, because your carelessness might involuntarily
violate other people’s privacy. Only if you reach out to
protect other people’s information on your phone, it will
be possible to protect your information on other people’s
phones.
In order to solve the problem, we introduce the concept

of Collaborative Privacy Management, which was first pro-
posed and studied in on-line social networks [6, 5]. Our
key idea is moving from a phone-centric mechanism (i.e.,
everyone protecting their own phones) to a collaborative
data-centric mechanism (i.e., protecting specific data, no
matter it is on which phone). As in the earlier example,
besides Alice, her friends (Bob, Carl, David, etc.) should
act collaboratively to (1) protect their own phones from data
leakage; (2) honor all other data involvers’ specified privacy
requirements if it is different from one’s own settings.

Our assumption behind the collaborative technique is that
all smartphone users are good-will users who are willing to
help to satisfy the privacy requirements of all involvers of
the data on their phones. We believe this assumption is
reasonable since every user has the incentive to honor other
users’ privacy requirements, because otherwise his/her own
privacy cannot be protected. The technique is intended
to prevent unintended privacy leakage, instead of malicious
leakages, which belongs to a different research area.

In the proposed collaborative method, every user could
specify their own privacy policy on their data. The policies
will be enforced distributively on every phone where the
data is located. All phone owners must enforce the privacy
policies specified on the data on their phone. In this way,
the privacy of all users involved will be protected.

1.4 Solution Overview
In this paper, we design an XML-style policy template for

mobile users to describe their privacy requirements: what
kinds of sensitive data are accessible or inaccessible for a
given app or a specific app category. The policies of each
user will be collected and analyzed, in order to generate the
corresponding collaborative policy, which is to be enforced
on each device, for each user respectively.

We modify the Framework layer of the Android platform
to provide a fine-grained mechanism for sensitive data ac-
cess, which augments the Android permission system. The
collaborative policies are then enforced to block the sensitive
information accesses from specific apps, so that privacy
requirements coming from data involvers can be satisfied
on all devices containing the data.

We believe it is an overlooked problem on how to protect
the privacy and security of other people’s data residing on
one’s phone. This paper makes the following contribution:

• We identify the data involver privacy issue, in which
we are concerned about the privacy of not only phone
(data) owners, but also data involvers.

• We propose a fine-grained mechanism called collabora-
tive privacy protection, in which every user can specify
their own privacy policy, while the policies will be
enforced collaboratively in a distributed manner.

• We design and implement CoDroid, a proof-of-concept
prototype system for collaborative privacy manage-
ment on Android, and demonstrated the effectiveness
and applicability of the proposed techniques on two
case studies: contact access and photo publishing.

2. CODROID DESIGN
This section describes the design of CoDroid, a collab-

orative privacy management mechanism for the Android
operating system. The components in CoDroid include
policy specification for privacy requirement specification,
policy merging for collaborative privacy policy generation,
and policy enforcement for fine-grained sensitive data access.

2.1 Overview
Figure 2 shows the system architecture of CoDroid, in-

cluding a Policy Server and the modifications we made to
the Android operating system.

The Policy Server is a centralized server connecting all
mobile users together, storing necessary information of all

26

F
ra

m
e
w

o
rk

a
p

p

Policy Server

C
a

le
n

d
a

r

P
o

li
c

y
U

ti
l

�

ContactsSMSCalendars Policies

��

C
o

n
ta

c
ts

P
h

o
n

e

M
e

s
s

a
g

e
s

P
o

li
c

y
 E

n
fo

rc
e

m
e

n
t

Content Resolver (Modified)

C
o

n
ta

c
t

P
ro

v
id

e
r

C
a

le
n

d
a

r

P
ro

v
id

e
r

S
M

S

P
ro

v
id

e
r

C
a

ll
L

o
g

P
ro

v
id

e
r

M
e

d
ia

P
ro

v
id

e
r

Figure 2: The Architecture of CoDroid.

devices and individual privacy policies specified by each user.
Each mobile user registers an account on the Policy Server,
and establishes social relationships with others through it.
The server also includes the information describing what
apps or what kinds of apps are installed on each mobile
device. According to these information, the Policy Server
could generate a policy template for each registered user.
Mobile users express their privacy requirements through

individual privacy policies, which specify what kinds of
sensitive data can be accessed by a given app or a specific
app category. Each policy can be created based on policy
templates generated by the policy server. The template can
be edited using text editors or specialized visual editors 1.
All individual policies provided by users are then uploaded

to the Policy Server. Based on the individual policies of
his/her friends, the Policy Server applies a policy merging
process to generate a collaborative policy (co-policy) for
each registered user. The corresponding co-policy is then
downloaded to the respective device and enforced through a
policy enforcement component, which is implemented with
modifications to the Android Content Resolver.
Please note that an individual policy specifies the pri-

vacy requirements of each user, while a co-policy, which is
generated based on individual policies, specifies the privacy
requirements of all data involvers on one’s device. For
example, if Alice and Bob ask their phone numbers be
protected from the Facebook app, then as their friends, Carl
should honor such requirements, which will be represented
by Carl’s co-policy.

2.2 Policy Specification
In order to provide fine-grained access control capabil-

ities, each user can specify his/her own individual policy
requirement in an XML-style format shown in Figure 3. The
policy is similar to a list of permission labels for all apps
installed on one’s phone, however, it specifies not only the
privacy requirements for the individual’s device, but also for
all his/her data on other people’s devices.

1We have implemented a policy editor PolicyUtil, which
provides visualized support for policy editing, as well as
functions such as policy configuration, policy uploading
and downloading, as well as account registration/login and
adding friends, etc.

<policy>

<app name=“WeChat”>

<resource type=“contacts”>

<allow=“yes”/>

</resource>

<resource type=“photos”/>

<allow=“yes”/>

</resource>

</app>

<app> � </app>

�

<app> � </app>

</policy>

<policy>

<app name=“WeChat”>

<resource type=“contacts”>

<allow=“no”/>

</resource>

<resource type=“photos”/>

<allow=“no”/>

</resource>

</app>

<app> � </app>

�

<app> � </app>

</policy>

Katherine’s Individual Policy:

Alice’s Individual Policy:

Merge

<policy>

<app name=“WeChat”>

<resource type=“contacts”>

<allow=“yes”/>

<exception=“Katherine”/>

</resource>

<resource type=“photos”/>

<allow=“yes”/>

<exception=“Katherine”/>

</resource>

</app>

�

</policy>

Alice’s Co-Policy (generated):

<policy>

<app name=“WeChat”>

<resource type=“contacts”>

<allow=“no”/>

<exception=“Alice”/>

</resource>

<resource type=“photos”/>

<allow=“no”/>

<exception=“Alice”/>

</resource>

</app>

�

</policy>

Katherine’s Co-Policy (generated):

Figure 3: An example of individual privacy policies
and co-policies after merging.

Within the policy specification, each user lists his/her
privacy requirements for each app. Each app can be specified
with an attribute of “name” and/or a specific app category
with an attribute of “category”. For each app, all permitted
resource types are declared within the XML entry of this
app.

2.3 Co-policy Generation
A co-policy represents the privacy specification of all data

on a device, which satisfies all data involvers who have
provided their individual privacy policy regarding their data
on this device.

Figure 3 shows how to generate co-policies based on each
user’s individual policies. In order to generate one’s co-
policy for a particular app, we check all individual policy
settings for the app from all his/her friends (determined
by the policy server). All settings from different users are
merged into a new format which describes a “default” policy
(allow = “yes/no”) and a list of exceptions. Each exception
represent one data involver whose permission settings are
different from the default setting.

For the example in Figure 3, after merging, we can see
that in Alice’s co-policy, the two resources (contacts and
photos) are permitted by the app (WeChat2) as default,
while Katherine is an exception. The situation is opposite
in Katherine’s generated co-policy.

While generating co-policies based on individual policies,
we follow the following principles:

• The default co-policy of each user is defined as his/her
individual privacy policy, which means that if your
friends do not have any special requirements, you can
use the original Android permission system.

• Each policy item can be defined for each individual app
or a category (group) of apps. Approximate algorithms
are needed to match the app names in cases where
the same app might use different names in different
versions.

2or WeiXin in Chinese, which is the most popular online
chatting tool in China, whose function is similar to
WhatsApp.

27

• For each app (or app category) in the co-policy, we
calculate its co-policy as follows: the default policy
is defined as oneself’s individual policy, while other
people who require a different setting was specified as
a list of exceptions.

• We notice that some co-policies could be generated
automatically based on each user’s settings. We will
investigate the possibility of automatic co-policy gen-
eration in future work.

2.4 Policy Enforcement
In order to enforce the co-policy specification, we modify

the Content Resolver in the Android Framework to monitor
public APIs for sensitive data access. The process is similar
to the original Android permission system as describe ear-
lier. However, we make modifications to accommodate the
fine-grained privacy specifications in each user’s co-policy.
In our current implementation of CoDroid, we consider five
popular data types on Android phones: calendar, SMS,
contact, callLog and media (photos in particular).
First of all, all data accesses are allowed only if the

corresponding app declares the relative permission label in
its manifest file. This indicates that we are not allowing
extra access privileges beyond what the current Android
system allows for each app.
As we mentioned earlier, a permission allows the user

to access the whole database. In CoDroid, we check the
returned results to see whether specific data entry is against
the privacy specification in the co-policy. We then filter the
results to exclude those data from the returned results.
For example, in the sample policy we show earlier, in

Alice’s co-policy, although she allows the WeChat app to
access her contacts, it specifies that Katherine’s contact
information should not be accessed by WeChat. Thus, when
WeChat requests for a list of Alice’s contacts, Katherine’s
information will be excluded from the results WeChat re-
ceived from the Content Resolver.

3. IMPLEMENTATION
Sensitive data are retrieved using the corresponding con-

tent providers. In Android, five standard interfaces are
defined and implemented in each content provider, including
getType, insert, update, delete and query, such that other
components or applications can manage the underlying sen-
sitive data conveniently. Among these five interfaces, insert,
update and delete create information flows from mobile
apps to underlying databases, while the other two trigger
information flows in the other direction.
Content providers are not invoked by mobile apps directly.

Instead, they are called with content resolvers as the medi-
ation. Consequently, we hook and tweak the corresponding
APIs using the Cydia Substrate3:

• ContentResovler → query

• ContentResovler → openInputStream

The interface of openInputStream is also monitored because
photos are accessed in a different way from the other types
of sensitive data supported.
Take the query interface as an example, there are five

SQL-style parameters passed in the query interface:

3http://www.cydiasubstrate.com

• URI represents the type of the content which is re-
quested. For example,“content: //com.android.contacts/
contacts”, and “content://call log/calls”.

• Projection represents the table columns to be selected
from the underlying database. Unfortunately, it is
often set to “null” by mobile apps, which means that
all available columns should be returned.

• Selection and SelectionArgs are similar to the “where”
clause in SQL. Each question mark in Selection rep-
resents an argument, which is located in the array of
SelectionArgs. These two parameters are often set to
“null” by mobile apps, which means that all available
rows should be returned.

• Order Claims specifies the order in which records
should be returned. In general, there is a default order
pre-defined for each content provider in Android.

We parse the URI parameter to determine whether or not
the current request is relevant with the sensitive data sup-
ported. If it does, according to the co-policy specification,
we filter the projection parameters, and append the selection
and selectionArgs. After that, we invoke the original query
interface with the modified parameters. In this way, mobile
apps will receive abridged “views” of the requested sensitive
data, from which certain items are hidden to satisfy the
collaborative privacy requirements.

4. CASE STUDIES
In order to evaluate CoDroid, we construct two case

studies with a popular social app - WeChat.
The Android phones used in experiments are rooted and

installed with the Cydia Substrate at first. Then, we install
our modified content resolver with API hooking, link the
substrate files, and soft-restart them.

4.1 Case Study 1: Contact Access
In Android, many apps may access contact information

through the Contact Provider. We tweak the corresponding
query interfaces in CoDroid, so that passed-in parameters
can be modified according to the downloaded co-policy. In
this way, certain contact entries can be protected without
showing up in the returned results.

We employed the policies shown in Figure 3 and test the
function of importing contacts to WeChat on Alice’s phone.
The screenshots are shown in Figure 4. The left screenshot
shows the contact list showing up without applying CoDroid.
In this case, the privacy policy used is identical to Alice’s
individual policy in Figure 3. Because Alice allows WeChat
to access all her contacts, all entries in her contacts (include
Katherine) show up in the picture.

We then apply CoDroid with Alice’s co-policy, which
specifies that Katherine does not want WeChat to access
her contact info. In the right screenshot, we can see that
CoDroid successfully hides Katherine’s contact info.

4.2 Case Study 2: Photo Publishing
Many mobile users take photos with their phones and

publish them through all kinds of social media such as
Facebook and Twitter. One thing they normally forget is
that these photos might contain some images of other people

28

Figure 4: Case Study 1 - Contact Access in WeChat.
The screenshots show the contact list when the Alice tries

to import all friends in her contact list to WeChat. Left:

without CoDroid (using Alice’s original policy in Figure 3).

Right: with CoDroid (using Alice’s co-policy specified in

Figure 3.)

(normally friends). Some of the people in these photos might
not want to show them to the world due to various reasons.
In order to protect the photos according to each user’s

privacy requirements, we need to identify the people in
the photos. This could be achieved using face recognition
techniques with the profile pictures of each contact stored
on the local phone. More information could be referred to
our earlier work [8].
Now we assume that each photo has been successfully

tagged with names (IDs) of all people in it. Suppose Alice is
trying to upload one of the pictures from her photo album.
Figure 5 shows the list of photos showing up in the picture
selection window. Similar to the last case study, the left
screenshot shows the case with Alice’s original personal
policy, while the right screenshot shows the results with
CoDroid, where Alice’s co-policy specifies that Katherine
does not want WeChat to access her photos. As a result, all
Katherine’s photos are hidden from WeChat.

5. CONCLUDING REMARKS
Although many studies on privacy in the mobile systems

have been proposed, they mainly focus on detecting poten-
tial leakages on a particular phone. Based on our obser-
vation that sensitive information such as personal contact
information are not only located in one’s own phone, but
also distributed among the phones of his/her friends, we
describe a new privacy threat of leakages through friends.
To mitigate this threat, this paper introduces the concept

of collaborative privacy management to protect the privacy
of not only data owners but also data involvers on mobile
devices. We designed and implemented the proposed mech-
anism on Android to support fine-grained access control
on sensitive data. It allows each user to specify their
privacy requirements and enforce them collaboratively in a
distributed manner.
Defeating privacy threats such as leakage through friends

is not an easy task. Our current solution represents only a
very small step towards solving the problem, while a more

Figure 5: Case Study 2 - Photo publishing in
WeChat. The screenshots show the list of photos when

Alice tries to select a photo to publish in WeChat. Left:

without CoDroid (using Alice’s original policy in Figure 3).

Right: with CoDroid (using Alice’s co-policy specified in

Figure 3.)

complete and practical solution requires a much larger effort
in further investigation. Nonetheless, we believe privacy
protection beyond one’s own device is an important issue and
collaborative privacy management could become a viable
solution in the future.

Acknowledgment
This work is supported in part by the NSFC (No. 61103026),
the High-Tech Research and Development Program of China
(No. 2013AA01A605), and the National Basic Research
Program of China (973) (No. 2011CB302604).

6. REFERENCES
[1] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:

Detecting privacy leaks in iOS applications. In NDSS, 2011.
[2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI 10, pages 1–6, 2010.

[3] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In CCS 09, pages
235–245, 2009.

[4] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking for:
retrofitting Android to protect data from imperious
applications. In CCS 11, pages 639–652, 2011.

[5] H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and resolving
privacy conflicts for collaborative data sharing in online
social networks. In ACSAC ’11, pages 103–112, 2011.

[6] A. C. Squicciarini, M. Shehab, and F. Paci. Collective
privacy management in social networks. In WWW’09, pages
521–530, 2009.

[7] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Investigating user privacy in Android ad libraries. In IEEE
Symposium on Security and Privacy 2012 Workshops, 2012.

[8] L. Zhang, Y. Guo, and X. Chen. Patronus: Augmented
privacy protection for resource publication in online social
networks. In MobileCloud 2013, pages 578–583, 2013.

[9] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on Android).
In TRUST’11, pages 93–107, 2011.

29

