
Freeze It If You Can: Challenges and Future Directions in
Benchmarking Smartphone Performance

Yao Guo, Yunnan Xu, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University
{yaoguo, xuyn14, cherry}@pku.edu.cn

ABSTRACT
Benchmarking the performance of mobile devices such as
Android-based smartphones is important in understanding
and comparing the performance of different devices. Per-
formance benchmarking tools such as Antutu have been
widely used in both academia and industry. However, one
of the main difficulties when benchmarking smartphone per-
formance is due to the fact that the performance cannot be
measured accurately and steadily. This paper investigates
the challenges on performance benchmarking for Android-
based smartphones. We identify key factors affecting
performance benchmarking, which include frequency scaling
setting, temperature, running background services, etc.
Experiments show that some of these factors may cause
performance fluctuation by as high as 60%. We show prelim-
inary results in controlling the performance benchmarking
process to generate steady results, for example freezing
a smartphone in a refrigerator could remove most of the
fluctuations. Finally, we discuss the implications of our
study and possible future research directions.

CCS Concepts
•General and reference → Performance; •Human-
centered computing → Smartphones;

Keywords
Operating systems, smartphones, Android, performance
benchmarking, frequency scaling

1. INTRODUCTION
Mobile devices such as smartphones have been widely

adopted in the past decade. The number of smartphone
devices shipped has reached over 1.4 billion in 2015, about
four times than the number of PCs shipped in the same
year. Despite the popularity of iPhones, Android-based
smartphones have been dominating the market with more
than 80% of the share.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4907-9/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3032970.3032979

Benchmarking the performance of a computer system is
important for many tasks, ranging from hardware design,
OS optimization, to minimizing the overhead of security
approaches. Many studies have focused on the performance
measurement and optimization on traditional computers
such as Windows and Linux based devices, including var-
ious benchmarks [8], measurement studies and optimization
methods.

However, there are few research focused on the per-
formance benchmarking of mobile devices, compared to
much enthusiasm from the energy perspective. Nonetheless,
performance of mobile devices is still an important issue.
Similar to traditional computer systems, When developing
new techniques or approaches for mobile systems, it is
important to measure the performance, or compare the
performance of mobile devices in order to understand the
performance overhead and implications of new approaches.

Although there are many benchmarks available for tra-
ditional computer systems, there are no widely adopted
performance benchmarks for smartphones. If you want to
compare the performance of two smartphones, the most
widely used methods are benchmarking applications such
as Antutu [6] and PCMark [4].

For example, many security approaches use Antutu to
assess their performance overhead on Android smartphones,
for example Compac [13], SEAndroid [12] and RootGuard [11].
However, it is difficult to achieve consistent results in
Antutu benchmarking. In order to evaluate the performance
overhead of SEAndroid [12], the authors chose to run
Antutu for 200 times!1 One of the reasons of running
Antutu so many times is because the variation is high. For
some performance score components, the standard variation
is over 10% of the mean value, which indicates almost
prohibitively high variance among the benchmarking results.

Meanwhile, many device manufactures have been accused
of cheating on Android benchmarking tools [5], including
many big brands such as Samsung, HTC, LG and Asus.
For example, Samsung has been shown to use “benchmark
boosters” such as overclocking to increase the benchmark
scores by 20-50%.

This paper attempts to answer the following two ques-
tions: Why is it hard to measure the performance of
smartphones accurately? What are the challenges and how
do we control the measurement process in order to achieve
steady performance scores?

We present a detailed study on performance measure-
ments of Android smartphones with benchmarks such as An-

1Each run of Antutu typically takes about 5-10 minutes.

tutu, as well as microbenchmarks for storage and database
performance. We have found that the performance measure-
ment can be easily affected by various factors, sometimes
generating results more than 50% apart in the value of per-
formance numbers. The key factors affecting performance
measurements include: CPU frequency scaling settings,
temperature, background services running on the device,
available memory, etc.

Based on these experiments, we observe that we can
improve the benchmarking scores significantly by changing
the parameters in the test environment. For example,
putting a smartphone in a colder environment, such as in
a refrigerator, could improve the overall Antutu score by
more than 60%. Modifying the frequency scaling governor
in Android or killing unused background services can also
improve the benchmarking scores significantly.

However, the focus of this paper is not on how to improve
(or cheat) benchmarking applications, instead on how to
achieve stability in performance benchmarking results. In
a normal test environment, some components of Antutu
benchmarking scores can be varied by as much as 50%
without intentionally changing any environment parameters.
The variation can be reduced by fixing the CPU frequency,
fixing the environment temperature, as well as killing back-
ground services that may generate performance noises. We
show that with these practices enabled, we can improve the
stability of benchmarking results by an order of magnitude
for both Antutu and other microbenchmarks.

Finally, we show that with our recommended benchmark-
ing environment and parameters, the variations of both
Antutu and microbenchmarks can be controlled within 1% of
the mean value, which can be considered statistically stable.

This paper makes the following main contributions:

• To the best of our knowledge, this is the first explo-
rative study on how to measure the performance of
Android-based devices accurately and steadily.

• We have identified a list of factors that may cause
fluctuation in smartphone benchmarking results and
measured their effects through experiments on both
benchmarking apps and microbenchmarks.

• We propose some best practices that can be applied
in performance benchmarking, which can reduce the
variation of Android performance measurement to a
minimal degree.

2. BACKGROUND AND RELATED WORK

2.1 Background
Android has been the most popular mobile platform with

more than 80% market share. Due to the openness of
Android, there are thousands of different Android-based
smartphone devices on the market.

Benchmarking the performance of a computing system
(smartphones included) has always been an important issue.
For smartphone designers, it is important to understand the
performance bottlenecks in a system and fix the issues before
shipment. For smartphone users, it is important to know
the performance numbers before choosing a device. For
researchers, whenever the system has been modified, either
for improving security or optimizing for power, it is always

important to test the performance implications to make sure
it does not cause significant performance degradation.

Another very important issue, particularly for Android-
based devices, is to compare the performance of different
Android devices. Besides comparing hardware parameters,
many evaluation and review reports will include some kind
of performance measurement results, for example with
tools such as Antutu. As many devices nowadays are
equipped with processors of similar configuration and the
same amount of memory, the performance testing results
will demonstrate which device has been better optimized.

2.2 Existing Tools and Methods
Typically, performance evaluation of a computing system

requires both benchmarks and testing tools. For example,
SPEC CPU Benchmarks [8, 9] have been widely used for
benchmarking the performance of computer systems, espe-
cially at the architecture level. The Linpack benchmarks [7]
are also often used to measure a system’s floating point
computing power.

For a mobile system, the most widely used methods
are themselves mobile applications, many of which can be
downloaded directly from Google Play, including Antutu [6],
GeekBench [2], PCMark [4], etc.

For example, Antutu [6] is one of the most widely
used performance measurement tools, which is able to
not only produce a set of performance scores, but also
comparing the performance scores with similar devices to
help users understand the advantages and limitations of
the device. Besides an overall performance score, Antutu
(as of version 6.0) also provides a breakdown including
“3D (Graphics)”, “User Experience (UX)” (including data
security, data processing, I/O and gaming), “CPU” (in-
cluding mathematics, common algorithms and multi-core
computation), and “RAM” performance tests.

Other researchers also studied mobile performance issues.
Yoon [14] studied the performance of the Android platform
using a benchmark application, as well as public profile
software. MobileBench [10] is a set of mobile benchmarks in-
cluding both performance and user experience benchmarks.

In comparison to these existing work that focusing on
how to evaluate or improve benchmarking scores, our main
goal is to identify the reasons why performance numbers
fluctuate and how to achieve steady performance results
during benchmarking.

3. EXPERIMENTAL SETUP
We first evaluated different benchmarking methods on an

Android smartphone to examine the extent of variation in
the performance benchmarking results. we mainly use a
Nexus 5 smartphone, which installs Android version 4.4 and
Android version 6.0, respectively.

We perform experiments with the following benchmarks:

• We use the latest Antutu Version 6.0 as one of
the representative benchmarking tools. Antutu is a
comprehensive performance benchmarking application
considering performance from different aspects includ-
ing CPU, User Experience, Storage and RAM.

• We use GeekBench 3, which is an Android application
focusing on both single core and multi-core perfor-
mance benchmarking.

• We also wrote a microbenchmark that ports FIO [1],
a flexible I/O testing application, to Android, to test
the I/O, especially file and storage, performance.

• Finally, we use a database benchmark application for
Android, ORM [3], to test the database (including the
default SQLite and other database modules) perfor-
mance of Android.

For most of the experiments, we restart the phone and
wait for about 5-10 minutes for the device to reach a steady
state before we conduct the experiments. This procedure is
in accord with most practices recommended by benchmark
producers and also widely used in research papers.

4. BENCHMARKING RESULTS

4.1 Original Antutu Results

Testing Method #1 (Normal): We first show how
the performance scores may vary in a normal benchmarking
environment. We did not try to change the environment or
control the testing process. Instead we run the benchmarks or
benchmarking tools normally at room temperature, without
intentionally changing any parameters.

We ran the Antutu benchmark on a Nexus 5 with Android
4.4 for 15 times. Table 1 shows the analysis of the
performance results, focusing on the distribution of the
performance results. To expose the variation, we show
the highest and lowest scores for each score element, the
average scores (Mean), standard deviation (SD), as well as
the coefficient of variance (CV)2, which is used to indicate
the degree of variation in the results.

Although the standard deviation of the overall scores
is only 4% of the mean value, the difference between the
highest and lowest overall scores in 15 runs is close to 14%,
which indicates that the variance is pretty high.

When we look at the detailed score breakdown, we can see
that for some UX (User Experience) and CPU scores, the
differences between the highest and lowest scores are over
55%, while the standard deviation is also more than 15% of
the mean value. In such cases, the high fluctuation in these
scores means that the results cannot be used as an accurate
indication during performance comparison. Running the
benchmarking applications for many times does not solve
this issue because the numbers are unsteady in nature.

4.2 Variations Due to Frequency Scaling
From the results in Table 1, it appears that the main

factors affecting the final performance are mostly CPU-
related scores. Because the default voltage scaling policy
is set as “ONDEMAND”, it may change the frequency in
a different way every time Antutu runs, resulting in the
performance fluctuation.

Testing Method #2 (Fixed Frequency): In order to
confirm whether frequency scaling increases the variance,
we modified the frequency scaling (DVS) policy from “ON-
DEMAND” to “PERFORMANCE”, which means that the
smartphone will run at a fixed high frequency to achieve the
best possible performance.

2CV is calculated as SD/Mean.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

N O R M A L F I X E D T E M P F I X E D

T E M P + C P U

F I X E D

T E M P + C P U

+ K I L L B G

S E R V I C E S

W-RAW

W-OPTIMIZED

W-ORMLite

W-GreenDAO

R-RAW

R_OPTIMIZED

R-ORMLite

R-GreenDAO

Figure 1: Database benchmarking results, showing
only the coefficient of variance (CV) of each score
components from 15 test runs. Each line shows
the CV of read or write performance using different
database access modules.

Besides Antutu, we also tested other benchmarks in-
cluding PCMark and GeekBench, receiving similar results.
Table 2 compares the results of GeekBench with and without
controlling the CPU frequency. When we change the CPU
scaling policy to “Performance”, the overall results improve
and the variance is reduced by almost an order of magnitude.
At the same time, we observe that the overall performance
has been improved by 40% simply by changing the CPU
frequency scaling policy.

Besides benchmarking apps, we also tested the FIO
microbenchmark. Table 3 shows the benchmarking results
with FIO in 40 test runs, comparing the cases with different
CPU governor settings. Originally with the “ONDEMAND”
CPU setting, the variance is pretty high as the best and
worst performance difference is more than 13%. When we
fix the CPU frequency, the variance can be reduced by 3X.

Because FIO focuses on file and storage performance, it
is not CPU-intensive, such that fixing CPU frequency at
a high level only improves its performance by about 10%
on average. However, with a fixed CPU frequency, we can
control the performance variation much better.

4.3 The Effect of Temperature Control
Controlling the CPU frequency at the highest level may

overheat the CPU and board, thus it should not be used
as a recommended practice to conduct benchmarking. The
temperature of the Nexus 5 smartphone has sometimes
become extremely hot during our tests.

One of the reasons why the performance drops is because
the frequency governor has to scale down the frequency when
temperature readings are higher than a threshold. If we can
control the temperature of the environment, we can improve
the performance and probably reduce the variation as well.

Testing Method #3 (Fixed Temperature): To mea-
sure the effects of environment temperature, we conduct
experiments at a fixed lower temperature. During testing,
without changing any configuration on the phone itself, we
put it in a refrigerator that has a fixed temperature of 4 ◦C.

We run the ORM database benchmarking application [3]
under different temperatures: the first time under room

Table 1: Overall benchmarking results using Antutu 6.0 for Nexus 5 (Android 4.4) in 15 runs. Higher is better.
(Diff: difference between highest and lowest scores; SD: Standard deviation; CV: Coefficient of Variance.)

Antutu Score Highest Lowest Diff Mean SD CV
Overall 33792 29719 13.71% 31233.27 1246.99 3.99%

3D 4030 3909 3.10% 3989.53 32.10 0.80%
3D [Garden] 1980 1796 10.24% 1841.27 40.52 2.20%

3D [Marooned] 2177 2050 6.20% 2148.27 30.76 1.43%
UX 9229 7964 15.88% 8722.93 408.07 4.68%

UX Data Secure 2209 1885 17.19% 2029.87 80.27 3.95%
UX Data Process 736 627 17.38% 650.93 24.87 3.82%

UX Strategy Games 1261 807 56.26% 1078.87 165.33 15.32%
UX Image Process 3415 2999 13.87% 3278.27 146.99 4.48%

UX I/O Performance 1852 1507 22.89% 1679.00 112.45 6.70%
CPU 15612 12467 25.23% 13597.53 979.70 7.20%

CPU Math 4731 3428 38.01% 3636.07 306.49 8.43%
CPU Common 5227 3311 57.87% 4053.80 552.75 13.64%

CPU Multi-Core 6365 5532 15.06% 5907.67 307.44 5.20%
RAM 5298 4673 13.37% 4923.33 162.92 3.31%

Table 2: Benchmarking results with GeekBench 3.
Higher is better.

GeekBench Scores Mean SD CV

Normal
Single Core 667.05 127.57 19.13%
Multi-Core 2069.43 405.65 19.60%

Fixed Freq
Single Core 925.73 18.38 1.98%
Multi-Core 2851.13 65.63 2.30%

Table 3: Testing results for FIO in 40 test runs.
Lower is better. (Unit: millisecond.)

FIO Normal Fixed Freq
Highest 4820 4175
Lowest 4238 3993
Diff 13.73% 4.56%
Mean 4544.7 4047
SD 123.8 37.5
CV 2.72% 0.93%

temperature at about 25 ◦C, and then at a fixed temperature
of 4 ◦C.

Table 4 shows the comparison of performance results of
the ORM benchmark. The ORM application compares the
performance of the write (W) and read (R) performance of
different database modules, including the default SQLite (-
RAW), the optimized SQLite (-OPT), ORMLite (-ORM)
and GreenDAO (-GDAO).

We can see that when we fix the temperature at 4 ◦C,
the overall performance does not increase significantly, but
the variance has been reduced to about half (See Figure 1).
When we fix both temperature and CPU frequency, the
performance improves by 20-30%, while the variance has
been further reduced.

4.4 The Effect of Killing Background Services
Besides temperature and CPU frequency, other factors

might also affect performance numbers, including the num-
ber of running background services, the amount of free
memory, the I/O or network activities running in the back-
ground, etc. We have tested various combinations, finding

that background services and activities cause significant
performance noises during performance benchmarking.

Next, we show the influence on performance results by
killing background services. In contrast, running extra
processes or services in the background will influence per-
formance results in the opposite direction.

Testing Method #4 (Killing Background Services):
There are many processes and services running in the back-
ground when an Android smartphone boots up, depending
on the number of pre-installed applications and services
provided by the manufacture. We kill all user-mode processes
running in the background before we run the benchmarking
application. Note that some of the processes might restart
automatically after being killed. We wait for 3-5 minutes for
the system to reach a steady state before we run benchmarks.

As an example, we still use the ORM database bench-
marking results shown in Table 4 and Figure 1. In the last
configuration, we show performance results after killing all
background processes, besides fixing the temperature and
CPU frequency. The results show that although we can only
improve the overall performance marginally, we can reduce
the performance variance further by about 50% after killing
unused background services.

4.5 Antutu Revisited
Finally, we show Antutu benchmarking results again, with

the same Nexus 5 smartphone running Android 6.03.
Table 5 shows the method we used to control the test

environment such that we can reduce the variation in
benchmarking results. The absolute performance numbers
are similar to previous scores shown in Figure 1.

The results show that once we fixed the temperature at
4 ◦C (freeze the phone in a refrigerator), the variance has
been reduced by more than half to less than 2%. After we
remove the influence of background services, the variance is
reduced further to about 0.5%. In this case, even without
setting the CPU frequency at a fixed high level, we can still
achieve very steady benchmarking results.

3Similar results can be achieved for Android 4.4 as well.

Table 4: Database benchmarking results with the ORM application, showing comparison for each score
components from 15 test runs. Each column shows the values for Write or Read performance for each
database module. Lower is better.

Setups Value W-RAW W-OPT W-ORM W-GDAO R-RAW R OPT R-ORM R-GDAO

Normal
Mean 2388.67 1109.27 5047.93 1482.47 602.07 488.73 1464.00 883.47
SD 63.72 43.14 176.72 76.39 34.16 24.92 80.81 47.47
CV 2.67% 3.89% 3.50% 5.15% 5.67% 5.10% 5.52% 5.37%

Fixed Temp
Mean 2327.80 1131.80 5098.40 1487.47 596.20 483.40 1439.93 863.20
SD 57.29 24.62 59.48 20.79 31.59 15.06 36.14 40.97
CV 2.46% 2.18% 1.17% 1.40% 5.30% 3.12% 2.51% 4.75%

Fixed Temp
+CPU

Mean 1619.47 903.87 4141.13 1204.93 407.80 307.47 1122.40 598.80
SD 15.45 11.48 20.91 9.27 6.10 3.26 12.78 6.39
CV 0.95% 1.27% 0.50% 0.77% 1.50% 1.06% 1.14% 1.07%

Fixed Temp
+CPU +Kill
BG Services

Mean 1620.53 897.73 4080.53 1198.73 403.40 305.87 1088.20 598.93
SD 5.94 3.47 19.28 4.02 2.92 2.33 3.60 2.64
CV 0.37% 0.39% 0.47% 0.34% 0.72% 0.76% 0.33% 0.44%

Table 5: Antutu benchmarking results in different
controlled environments for Nexus 5 with Android
6.0. We run Antutu for 5 times in each case.

Setups Avg Score SD CV
Normal @ Room Temp 31833 1363.05 4.28%

Fixed Temp @ 4 ◦C 50716 970.92 1.91%
Killing BG Services 52013 276.29 0.53%

Although the results are still preliminary, it indicates that
the variation of smartphone performance can be reduced in a
controlled testing environment. As a result, there is no need
to run Antutu for hundreds of times because the variation
can be controlled within a small enough range.

5. DISCUSSIONS

5.1 Accurate and Steady Performance Bench-
marking is Possible

Based on the results presented above, we recommend
the following practices in minimizing the fluctuation in
performance benchmarking. One should consider control the
following parameters in the testing environment:

• The temperature in the testing environment should
be controlled at a stable level. Running benchmarks
on a smartphone will definitely increase its tempera-
ture (especially on inside boards), which affects the
decisions made by the frequency scaling governor.
Controlling the temperature at a lower level than
normal room temperature will improve the stability
of benchmarking results significantly.

Note that although the overall performance may be
improved when we conduct testing in low temperature,
it does not affect the results because our focus is to
compare the performance between different scenarios,
instead of absolute performance numbers.

• Keeping the background activities at the minimal will
help reduce the benchmarking noise. This includes
killing unnecessary processes and services running in
the background and keeping an eye on the available
free memory to check whether there are any irregular-
ities. Removing the influence of background activities

also helps compare two different smartphones more
fairly as different smartphone makers pre-install a
different set of apps that might run in the background.

• In order to achieve real low variance, one should
consider disable dynamic scaling and set the CPU
frequency at a fixed level if necessary. For example,
changing the scaling governor from ONDEMAND to
PERFORMANCE will make the results more stable.
However, this should be used with care. On one hand,
because in reality frequency scaling is unavoidable, we
risk creating an unrealistic testing environment. On
the other hand, one may also risk the possibility to
burn his/her phone if the temperature reaches a very
high level.

Although far from an ideal solution, putting your smart-
phone inside a refrigerator or close to the AC vent will help
stabilize the testing results.

5.2 Limitations
Benchmarking the performance of mobile devices is a

complicated issue because many factors might affect the
performance and its stability during benchmarking. The
main goal of this paper is to raise the importance of this issue
and inspire more concerns and ideas to better performance
benchmarking approaches.

We have mainly focused on one aspect of mobile per-
formance benchmarking, i.e., the stability of benchmarking
results. If the result is far apart every time we take a
test, it will be difficult to use the results to measure the
performance overhead, which is typically very small. Thus
if the performance overhead is only a couple of percentage, it
only makes sense when the variance of testing results should
be much lower than that.

However, there are more complicated issues surrounding
mobile performance benchmarking. For example, frequency
scaling is typically used to prevent overheating and saving
battery. From this angle, it will difficult to tell whether
we should disable frequency scaling to achieve steady per-
formance, as a device has good reasons to scale down the
frequency to respond to the running environment.

For the purpose of this work, we believe achieving steady
results is important to compare the performance overhead
of many research implementations, for example, security

or energy optimization approaches. Our main goal is to
help researchers obtain steady results while evaluating the
performance impact of newly applied mechanisms. However,
comparing the performance of different smartphones would
need to consider many other factors, which is out of the
scope of this paper.

5.3 Future Research Directions
Performance benchmarking of mobile devices such as An-

droid smartphones is an important issue that has not been
studied extensively. Although we have shown preliminary
results that performance benchmarking can be conducted
accurately and steadily with careful control on the testing
environment, we need a more systematic approach to bench-
marking mobile performance.

A systematic study on factors resulting in per-
formance variations. For example, how do the different
factors affect each other in performance variations? How
should we perform trade-offs between performance speedup
and performance stability? What is the extent of perfor-
mance variations on different smartphone devices? Besides
smartphones, do these factors affect performance stability
of PCs or servers as well? We plan to expand our research
to cover these details to reveal more insights on smartphone
performance benchmarking.

More comprehensive approaches to achieving per-
formance stability. We have shown several methods
that can be used to achieve performance stability, however
methods such as “freezing the smartphone” can only be used
as an ad-hoc solution, disabling frequency scaling should
not be recommended as a best practice either. We need
more comprehensive and practical solutions that can not
only achieve performance stability, but also represent real-
world testing scenarios as well.

Mobile benchmarks. The research community needs
mobile benchmarks that can be used to evaluate the perfor-
mance of a mobile device, but there are no good benchmark
suites available at this point. Performance-oriented bench-
marks can also be used to evaluate the power/energy aspects
of a smartphone. Compared to traditional benchmarks
that are computing-intensive, a mobile benchmark suite
should consider the special characteristics of mobile devices,
including user interaction, mobile gaming and different
network configurations.

Performance testing tools. Many researchers agree
that tools such as Antutu is not a good indication of device
performance. Nonetheless, Antutu is still widely used in
both academia and industry, because we do not have a
better substitute. We, as a community, should be able to
create a performance testing tool that reports accurate and
steady results, such that we can keep ourselves and other
consumers/researchers from being cheated by smartphone
manufactures.

6. CONCLUDING REMARKS
This paper presents an explorative study on how to

measure and compare the performance of Android-based
devices steadily. Through a series of experiments, we show
that measuring the performance of Android smartphones
can be inaccurate and difficult to control due to various
reasons. We also show that it is possible to generate stable
performance results by controlling the testing environments
and parameters.

Acknowledgment
This work was partially supported by the National Key
Research and Development Program. 2016YFB1000105 and
the National Natural Science Foundation of China under
Grant No.61421091. We also want to thank the anonymous
reviewers for their constructive feedbacks.

7. REFERENCES
[1] FIO: A Flexible I/O Tester. https://github.com/

axboe/fio.

[2] GeekBench 3. https://play.google.com/store/
apps/details?id=com.primatelabs.geekbench.

[3] ORM: Android application for benchmarking
ORMLite and GreenDao.
https://github.com/daj/android-orm-benchmark.

[4] PCMark. https://play.google.com/store/apps/ detail-
s?id=com.futuremark.pcmark.android.benchmark.

[5] AnandTech. The State of Cheating in Android
Benchmarks. http://www.anandtech.com/show/
7384/state-of-cheating-in-android-benchmarks.

[6] Antutu Labs. Antutu Benchmark. https:
//play.google.com/store/apps/details?id=com.Antutu.
ABenchMark.

[7] Dongarra, J. J., Bunch, J. R., Moler, C. B., and
Stewart, G. W. LINPACK users’ guide. Siam, 1979.

[8] Henning, J. L. Spec cpu2000: Measuring cpu
performance in the new millennium. Computer 33, 7
(2000), 28–35.

[9] Henning, J. L. Spec cpu2006 benchmark
descriptions. ACM SIGARCH Computer Architecture
News 34, 4 (2006), 1–17.

[10] Kim, C., Jung, J., Ko, T.-K., Lim, S. W., Kim, S.,
Lee, K., and Lee, W. Mobilebench: A thorough
performance evaluation framework for mobile systems.
In The First International Workshop on Parallelism in
Mobile Platforms (PRISM-1), in conjunction with
HPCA-19 (2013).

[11] Shao, Y., Luo, X., and Qian, C. Rootguard:
Protecting rooted android phones. Computer 47, 6
(June 2014), 32–40.

[12] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing flexible MAC to Android. In NDSS
(2013), vol. 310, pp. 20–38.

[13] Wang, Y., Hariharan, S., Zhao, C., Liu, J., and
Du, W. Compac: Enforce component-level access
control in android. In Proceedings of the 4th ACM
Conference on Data and Application Security and
Privacy (New York, NY, USA, 2014), CODASPY ’14,
ACM, pp. 25–36.

[14] Yoon, H.-J. A study on the performance of android
platform. International Journal on Computer Science
and Engineering 4, 4 (2012), 532.

