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ABSTRACT Current generation of smartphones is running more and more complex applications that reduce
the battery life to as short as several hours. Thus, it becomes very important to understand the diversities of
applications installed on smartphones and how batteries are consumed across different applications. This
paper presents a large-scale battery study on smartphones focusing on diversities in applications and users.
Based on application and battery traces collected on over 80 000 Android smartphones for a four-week
period, we analyze the battery discharging patterns, the types of mobile applications, and the usage and
energy consumption patterns for these applications. During the analysis, we introduce a novel method to
calculate the energy consumption rate for each application based on coarse-grained battery data collected
with a lightweight monitoring tool. Based on the results, we present some observations and discuss possible
improvements on smartphone designs and mobile application development. We also compare our results to
some previous studies wherever it is possible.

INDEX TERMS Mobile computing, smartphones, battery, energy consumption, user study.

I. INTRODUCTION
Smartphones have become more and more popular since
the introduction of iPhone and Android-based devices.
Compared to traditional feature phones, smartphones have
more powerful functions and are capable of performing com-
plex computations, while equipped with various sensors such
as cameras and GPS. More and more complex mobile appli-
cations (or simply apps) are running on smartphones, which
could reduce the battery life to as short as several hours.
A recent survey shows that battery life is the single main gripe
of today’s mobile phone users [1].

The behaviors of smartphone users also differ greatly from
traditional feature phone users. When choosing to purchase a
specific smartphone, the main concerns of many users are not
focused on the quality of voice calling or the length of standby
time, instead of CPU processing speed and screen sizes. With
the apps running on smartphones more and more complex,
it will be interesting to see how much time smartphone users
are relying on their phones to play games or access the Inter-
net, compared to the time smartphones are used for traditional
functions such as voice calling or sending messages.

In order to understand how smartphone batteries are con-
sumed, many researchers have performed studies on the

interaction of smartphone user behavior and batteries [2]–[4].
The scale of the studies ranges from a couple of hundred [2]
to twenty thousand [4] users or devices. However, existing
empirical studies on large-scale users have mainly focused
on devices and users. To the best of our knowledge, there
have been no existing large-scale user studies on application-
battery interactions.Webelieve one of the reasons for lacking
of this kind of study is that it is difficult to calculate or predict
how apps consume energy in the wild.

On the other hand, there exist many work on app energy
modeling and optimizations for smartphones [5]–[8], but
typically in a controlled environment with a limited number
of users and apps. Although these smaller-scale modeling
work consider app-specific energy issues, it cannot reveal
the diversities of thousands of apps available in various app
stores. In order to tackle this challenge, our study focuses
on understanding how different apps consume battery on
smartphone devices based on large-scale battery traces.

Compared to small-scale studies that can apply instrumen-
tation and more complicated techniques while focusing on
a small number of apps, large-scale studies are difficult to
acquire fine-grained data. For example, a lightweight battery
monitoring tool without modifying the Android operating
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system can only record battery changes at one percentage
granularity. It is very difficult to calculate accurate app energy
consumption rate using this kind of coarse-grained battery
traces. We believe that this is one of the key reasons why
earlier large-scale studies have been focused mainly only
on user-battery interactions, instead of application-battery
interactions.

This paper applies an approximate method to calculate
app energy consumption rate based on coarse-grained battery
traces. Although the battery traces of each app on a partic-
ular smartphone is inaccurate, we could achieve much more
accurate results when we add thousands, or even millions, of
traces together and calculate an average energy consumption
rate for each app for all users. In this calculation method,
we rely on the large amount of data available to amortize
the errors in each specific trace. We evaluate this method
with measured power numbers using the Monsoon Power
Monitor [9]. Results show that the difference between the
calculated energy consumption rate and the measured power
current is less than 10%, which shows that the estimation
method is pretty accurate with large-scale coarse-grained
battery traces [10].

With this estimation method, we perform a large-scale
battery study on smartphones focusing on diversities in apps
and users. We have collected app and battery traces on
over 120,000 Android smartphones for a four-week period.
After filtering unusable data due to a variety of reasons,
we analyzed the data on over 80,000 smartphones in this
study. We analyze the types of apps, the battery consump-
tion patterns for different types of apps, and distinctive
characteristics for heavy and light users. Based on the
analysis, we present our observations and discuss possi-
ble improvements on smartphone designs and mobile app
development.

Among the many interesting findings in our study, the
following are of particular interests.
• Only a very small percentage of smartphone time and
battery is actually used for the traditional ‘‘cellphone’’
purpose. On average, 5% of battery and 6% of usage
time are spent on voice calling. This not only confirms
our assumption that smartphones are used for a variety
of purposes, but also shows that smartphones are not
‘‘phones’’ anymore, instead should be called a mobile
mini-computer with voice calling features.

• Power consumption during standby is actually much
higher than expected. Our results show that the average
power consumption during screen-off is 10X higher than
the ideal idle state, which suggests that there are a lot of
things going on in the background that causes standby
time of many smartphones being reduced to less than
a day.

• Despite the widely circulated complaints on the short
battery life of many smartphones, we found that most
phones could be used for more than one day. Consider-
ing the fact that many users are willing to (and able to)
charge their phones at least once every day, the

functionalities of smartphones have weighted more than
the shorter battery life.

We make the following main contributions in this paper:

• To the best of our knowledge, this is the first large-
scale study exploring the relationships between different
types of apps and their battery consumption patterns.
Although there have been many large-scale user stud-
ies on smartphone batteries, they mainly focused on
smartphone devices and users because it is difficult to
calculate energy consumption of each mobile app in the
wild.

• We introduce a statistical method to calculate energy
consumption rate for apps based on coarse-grained bat-
tery traces. We have shown that the calculation achieves
accurate approximation compared to measured power
numbers.

• Based on the result analysis, we present a list of obser-
vations, which we believe is helpful for identifying the
special characteristics of smartphones from an applica-
tion perspective.

The rest of this paper is organized as follows. We first
introduce the data collection methodology in Section II and
energy calculation method in Section III. In Section IV, we
discuss an overall analysis on the users and apps studied.
Then we perform a classification of apps in Section V and
present the energy distribution and comparison of each app
category. In Section VI, we perform a diversity study on
different smartphone users. We discuss our observations and
findings in Section VII. Finally, we present the related works
in Section VIII and conclude the paper in Section IX.

II. DATA COLLECTION METHODS
In this section, we present an overview of the data collecting
methodology used in our study.

A. CHALLENGES
In contrast to smaller-scale studies on app and battery in
previous work, a large-scale study involving more than
100,000 users would face many challenges.

Although smaller-scale studies could manipulate the apps
and ask users to cooperate, a large-scale study requires that
the collection process is unobtrusive, such that users would
not experience any service disrupt or performance degra-
dation, with no significant network traffic increase. This
requirement posts a strict limitation on the range and size of
the collected data.

Since we collect information in the wild, we should be
able to handle all the unusual problems occurring in the
data collection process, such as user changing batteries or
SIM cards, exceptions of data collection service or smart-
phone devices, irregularities in specific types of devices, etc.

B. DATA COLLECTION SERVICE
We developed a light-weight data collection service, which
is integrated into an Android app called ‘‘Energy Saver’’
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FIGURE 1. Architecture of the data collection service.

that once had more than a million active users.1 Figure 1
presents the architecture of our data collection service, which
contains two major components. The event listener collects
all the events related to component status and apps, which
is broadcasted in the Android system. The data sender is
responsible of sending the event information to the server
via the Internet. After the server receives the information,
it will perform some processing work and store it into the
database.

The service would run automatically after the smartphone
is powered on, capturing changing status of battery levels,
screen brightness, WiFi, Bluetooth and running app infor-
mation. The collected data is first written into a local file.
The local data will be transmitted back to the database on
a central server periodically when the phone is connected
to the Internet. A typical user would transmit less than
20KB data to the server in a single day, which would not
introduce significant increase in their network traffic.

We collected data from over 120,000 Android users over a
period of four weeks. The total data size is over 80GBytes.
After incomplete and unusable data due to different rea-
sons are filtered (which will be explained later), in the end,
we use data from 80,000 smartphone users to perform the
study.

1) COLLECTED EVENTS
We collect information broadcasted during events that cause
interrupts or system calls, including battery level changes,
app starts, screen on/off, network on/off, etc. At each event,
we record the relevant data that represents the state changes.
The information we collected include:
• Battery level: The battery level is a percentage of the
whole battery capacity range from 0% to 100% that
denote current remaining power of the smartphone.

1The actual name of the app is ‘‘ShengDian Bao’’ in Chinese, which is
a comprehensive energy saving app on Android. We collaborated with the
company who developed this app to incorporate our collection service in an
earlier version. As with many energy saving apps, users are asked and willing
to share their battery traces to help improve the functions provided by the app.
We have collected only privacy-unrelated data and these data have been used
solely for research purposes.

• Screen status: Screen events have two types. One is the
screen on/off event; the other is brightness level change,
which is denoted by an integer ranging from 0 to 255.

• Foreground app: This information records the current
app in use.We collect all app start events and foreground
app switch events, such that we are aware which app is
in the foreground at each time point.

• Background apps and services: Collecting this infor-
mation can be very large in data size. We record them
incrementally. When a smartphone is powered on, we
start our data collecting service and record the list of
background apps and services. After that, we only record
the changes to the list of background apps and service.

2) DEVICE INFORMATION
In order to distinguish between different smartphone devices,
we also need to identify smartphones and record device
information such as the phone type, phone model, ROM
version, etc. We identify smartphones by IMEI2 and users by
IMSI.3 Both IMSIs and IMEIs are anonymized to protect the
privacy of the users. Although most of the IMSIs and IMEIs
have a one-to-one correspondence relation, we found that
some IMEIs might correspond to several IMSIs. This kind of
abnormal data will be filtered before we perform calculations.

Because the battery capacities might vary for different
phone models, it will be inaccurate to represent the power
dissipation rate based on battery level percentages collected
from the system.When comparing the discharge rate between
different phone types or different apps, we must take battery
capacities into consideration. We collected the battery capac-
ity data based on the standard configuration of each phone4

and use this information together with the battery percentage
drops.

C. DATA FILTERING
Since we collected the user data in the wild, there exists a
small fraction of corrupted or incomplete data, which cannot

2International Mobile Equipment Identity
3International Mobile Subscriber Identification Number
4Although a smaller fraction of users might use a different battery, we do

not consider this as a common practice.
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be used in our analysis. After the data are collected, we first
filter out the invalid/unusable data according to the following
heuristics.

1) OVERALL FILTERING
First, we filter out the invalid users using the following steps:

• Unknown phone type: We discard the users with invalid
or unknown phone types, because we could not get the
battery capacity info of these phone types to perform
energy related calculations.

• Unknown or uncertain users: We discard the users
whose IMEI numbers or network MAC addresses are
invalid. We also remove the users whose IMSI corre-
sponds to more than one IMEIs. Likewise, we remove
the phones whose IMEI corresponds to more than one
IMSIs. The reason is that the data from one of these
IMEIs (or IMSIs, MACs) might be produced by several
users and smartphones. If we put the event data from
different users together, they could be confused by each
other.

• Minimum data collecting period : We discard the users
whose data collecting period is less than 2 weeks (The
collecting service could be switched off or the hosting
app could be uninstalled by the user).

• Minimum number of events: We remove the users
whose events number is less than a pre-set threshold
(set as 500 in this study).

• Other abnormal users: We remove the users whose
devices record abnormal system time change, the users
who frequently change batteries, etc.

2) APP-RELATED FILTERING
We define an app usage period as the time interval from the
app starts or switched to the foreground, to the app ends or
switched to the background. Within an app usage period, we
store the time period of this usage event and the battery power
change from the app start to the app end.

When we perform calculations related to power consump-
tion, it is necessary to perform a pass to filter the inaccurate
data, which consists of the following steps:

• Minimum app using time: If an app running in the fore-
ground for less than 10 seconds, we will discard the data
of this event.

• Maximum idle time: If a user record no events in more
than ten hours, we regard the user’s phone had powered
off. We would reset and restart the calculation.

III. ENERGY CALCULATION
In this section, we present our method to perform energy
calculation with the collected data, after filtered using the
previously explained method.

A. CHALLENGES
While calculating energy consumption rate for each app, we
face many challenges:

• One of the major obstacles is the granularity of the
battery traces. Because we could only record battery
changes at one percentage granularity, many short app
traces consumes zero percent battery. In this case, many
shorter app traces using less than 1% battery cannot be
detected. We will show later that we could use a sta-
tistical method to calculate a combined average energy
consumption rate for all users.

• When individual apps are concerned, multiprocessing
becomes another major obstacle. As there are always
multiple processes running at the same time, we are
unable to distinguish the energy consumed by the fore-
ground and background apps. As a simple solution, we
only consider the foreground app as the current app
consuming energy. In this case, because we are able
to catch all process switching events, we always know
which app is running in the foreground.5

• Apps might be used when the battery is charging. Thus
we will distinguish between battery charging and dis-
charging, and remove the app events during battery
charging while calculating energy consumption rates.

• The data collecting service might affect the energy num-
bers because it also consumes energy. Because it is very
difficult to estimate the energy consumed during data
collection, we assume that the data collecting service
does not consume any energy. We did not measure the
energy cost of the collecting service because it was
integrated into another Android app. However, because
we only intercept the system intents that are broadcasted,
no extra querying or modifying operations are actually
conducted, thus the energy overhead is minimal.

B. CALCULATION METHOD
In order to calculate energy consumption statistics based
on the recorded traces, we need to identify and filter out
the events occurred during the charging periods. Then we
can compute average energy consumption rate for each
app based on battery trace collected from all user devices.
We can also calculate projected battery life based on the
energy consumption pattern of all apps.

1) BATTERY LIFE CALCULATION
We record the history of battery levels for each user with the
battery level change events. We first separate the battery level
history into charging regions and discharging regions to ana-
lyze charging habits of users and battery life of smartphones.

We consider a charging region as a battery charging event,
including charging by A.C. electric sources and USB con-
nections. If a fully-charged smartphone is still connected to
an electric source, we will not consider this time period as a
charging event. To analyze user charging behavior, we record

5When there exists an app running in the foreground, the background
services and activities typically consumes much less power. However, when
there are no foreground apps running, the background services still consume
significant energy in a long period of time(We will demonstrate this later in
our results.).
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relevant information for each battery charging event, such as
the time when a charging event starts/ends, the battery level
when a charging event starts/ends, etc.

We calculate the battery life of smartphones based on the
discharging regions of the battery level history. First, we can
calculate the average discharging rate of each user using the
following equation:

AverageDischargeRate =
TotalBatteryDrops

TotalDischargingTime

Then we can calculate the projected battery life as follows:

BatteryLife =
100%

AverageDischargeRate

Note that we do not consider the battery capacity in this
calculation. The discharge rate here is denoted by the battery
percentage level.

2) ENERGY CONSUMPTION RATE FOR APPS
We calculate the power consumption of apps based on statis-
tics with large-scale battery traces to reduce the error during
calculation. First, we calculate the running time and battery
level drops of every battery trace, then simply com-
bine them together to calculate the TotalUsingTime and
TotalBatteryLevelDrops.
As defined earlier, an app usage period is the time interval

from the app starts or switched to the foreground, to the app
ends or switched to the background (or the smartphone is
powered off).

The average energy consumption rate of each app can be
calculated as follows:

AvgEnergyConsumeRate =
TotalBatteryConsumed

TotalUsingTime

Besides the coarse-grained battery level issue, we deal with
the other challenges described above as follows:
• To deal with the charging influence, we detect the charg-
ing events using the battery level change events.We con-
sider that the mobile device is charging if the battery
level goes up.When calculating the power consumption,
we only consider the running periods without charging.

• To deal with the background battery consumption, we
regard all the battery level drops as consumed by the
foreground app. It is acceptable because foreground
apps usually use the CPU, screen and other components
much more than the background apps and system ser-
vices, therefore consuming more energy. We consider
the background battery consumption as the general run-
ning environment of the foreground app in this study.

• Because of the timestamp problem, when we calculate
the battery level drops, if we use the battery level of
the nearest battery level change events to represent the
battery level of the app switch event, there may be some
errors for each battery trace. However, since the battery
levels always change by 1%, the error of one battery
trace is smaller than 1%. We expect that the error could

be reduced to a tolerable level by the statistic method
with large-scale analysis.

C. EVALUATION OF THE ENERGY CALCULATION METHOD
Although directly using each of the battery traces to calculate
the power consumption would be inaccurate, we expect that
the large-scale analysis could reduce the error into a tolerable
level. Thus we perform a series of evaluation of different scale
to evaluate our calculation method presented above.

Since the time duration of battery traces vary from several
seconds to several hours, it is inappropriate to represent the
scale of battery traces by the number of battery traces. In our
evaluation work, we denote the scale of battery traces by the
number of users.

In our evaluation, we select several different scales of users
to calculate the power consumption, from 10 users to all the
80,000 users. We randomly select corresponding number of
users for 5 times at every scales, from 10 users to about
10,000 users. Then we calculate the average and standard
deviation of the results of each scale.

FIGURE 2. Calculated power of phone call at different user scales.

Figure 2 shows the results of calculated power consump-
tion of phonecall with different scales of battery traces.
It is obvious that the variance becomes smaller when the
scale of battery traces increases. Then we analyzed the
average, variance and the standard deviation (shown in
Figure 3(a) and 3(b)). At the scale of 10 users, the calculated
power consumption vary from 0 mA to 474.55 mA, while
converge to a variance of 278.89 mA to 309.13 mA at the
scale of 10,000 users. In comparison, we also calculated the
power consumption with all the 80,000 users. The results of
all users falls into the range of the variance of the result of
10,000 users.

We also conduct similar experiments for two other appli-
cations, Figure 3(c), Figure 3(d), Figure 3(e) and Figure 3(f)
show the results of AngryBirds and SinaWeibo. We can also
see that the energy consumption rate of each app converges
to a fixed number when the number of users becomes larger
and larger.

Overall, the results show that the power consumption rate
of each app converges after the number of users reaches
10,000, thus we are able to achieve an accurate estimation
with the combined average in our experiments. It indicates
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FIGURE 3. Estimation results at different user scales for phone call (a)(b), Angrybirds(c)(d) and Sinaweibo(e)(f). (a)(c)(e) is the average
power consumption and the variance at different user scales. (b)(d)(f) is the standard deviation at different user scales.

that a relative high number (up to 10,000) of users is needed
in order to provide accurate power estimation in this kind of
study.

D. COMPARISON WITH MEASURED POWER NUMBERS
In order to further confirm the accuracy of our calcula-
tion method, we build an experiment environment using the
Monsoon Power Monitor [9]. We perform measurements on
a set of representative benchmarks from different categories
using the power monitor. The measured data is compared to
the calculated power numbers to check their accuracy.

The smartphone we measured is a Tianyu W806 device
with dual-core Nvidia Tegra2 processor at 1GHz and 4.3 inch
screen. The phone model is representative of the mainstream
smartphones in the market during our data collection period.

Table 1 shows the comparison between average measured
power current and average energy consumption rate calcu-
lated in our study. The difference between the measured data
and the calculated power numbers are very small, with all
differences less than 10%. Although this is only done for
a particular device, it demonstrates that although our data
collection and energy calculation method might not be accu-
rate enough to calculate energy numbers for individual users
with limited data, It is good enough to estimate the energy
consumption rate of different apps over a large-scale data.

IV. OVERALL RESULTS AND ANALYSIS
We first present the battery statistics based on the data col-
lected on 80,000 valid users and compare the results with
earlier work.
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TABLE 1. Comparison of measured current and calculated energy
consumption rate of apps.

FIGURE 4. Distribution of battery life of all smartphones (CDF). The
average battery life is about 22.6 hours.

A. BATTERY LIFE
The distribution of battery life of all users is shown in
Figure 4. We notice that the battery life of about 75% smart-
phones can last more than 12 hours, with an average battery
life of about 22.6 hours. It suggests that most smartphone
users could keep their battery alive if they can charge once
or twice every day.
How many times do batteries die? We attempt to identify

a battery dead event if a low level of battery (less than
5% in this study) appears before a relatively long period of
time (more than 1 hour in this study) in which the phone
is not used. The result shows that batteries died for about
80,000 times for all 80,000 users within the four week period.
On average, batteries died roughly once in a month per user.
It shows that although batteries lasting less than a whole day
for many users, they are able to charge the battery in time such
that phone availability is rarely affected due to battery.

In Ferreira’s study [11], all participantsąŕ devices are on for
at least up to a full day. The likelihood of having a device on
for up to two days is 33%, 18% for up to three and 11% for
up to four days. However, their work counted all the power-
off and reboot events, which could be caused by some other
reasons.We only consider the long period of power-off events
after a low battery level, which we think more likely to be
battery died events.

B. BATTERY CHARGING HABITS
Battery charging is also an important activity of smartphone
users. We study user charging habits from the following
aspects.

• Figure 5(a) and Figure 5(b) show the distribution of
battery levels at the start and the end of each charging
period, respectively. It shows that the battery levels are
evenly distributed when charging starts, while half of the
battery levels of smartphones are more than 90% when
charging ends. The result indicates that users consider
little about their battery level when they decide to charge
and rarely stop charging before their batteries are fully-
charged to gain a longer battery life.

• Figure 5(c) presents the distribution of the charging
periods. It shows that more than 80% of all charging
events last for less than two hours. The results suggests
that smartphone users tend to charge their batteries more
frequently by a relatively short time period.

• Figure 5(d) presents the average charging frequencies
for all users. It shows that 70% of the users are able to
charge once or more per day on average. About half of
the users charge their batteries more than twice per day
on average. Considering this together with the battery
life data earlier, we could conclude that most of the
smartphone users can always get their batteries charged
in time. Although smartphone batteries last less than a
day, most users are able to charge their phones in time.

In comparison, Ferreira’s study [11] pointed out that users
mostly avoided lower battery levels (lower than 30% in their
work). However, we could see in Figure 5(a) that the battery
levels when charging events start are evenly distributed. There
are also a significant number of users charging their phones
at a low battery level.

V. DIVERSITY IN APPS
Because the apps running on smartphones are more and
more complex, it is important to understand the behavior of
different apps and how batteries are consumed by different
apps.

A. APP CLASSIFICATION
We collected information on more than 23,000 different
Android apps in our study. In order to understand the behavior
of these apps better, we classify the top 200 apps based on
total usage time into 7 categories (shown in Table 2). Each
category represents a set of apps performing similar functions
or using similar components of the smartphone, such that
we expect them to behave similarly when user activity and
energy dissipation are considered. Although these 200 apps
only account for less than 1% of all the apps, the running time
of these apps accounts for 82% of all the running time. Thus
these 200 apps can be considered as a good representative.

Standby can be considered as a special ‘‘app’’ category,
which represents the time period when users do not use
their smartphones explicitly. We identify these time periods
with the screen off status. However, standby in a smartphone
is not the same as idle. When a smartphone is in standby
mode, there might exist some apps and services or some
network data transfer activity running in the background.
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FIGURE 5. Charging Habits. (a) Battery level when a charging event starts. (b) Battery level when a charging event ends. (c) The
duration of charging events. The average charging duration is 1.2 hours. (d) Distribution of charging intervals. On average, users
charge their batteries every 27.3 hours.

FIGURE 6. App Distribution. (a) Time and energy proportion of standby and apps. (b) Using time proportion of app categories.
(c) Energy consumption of app categories.

TABLE 2. Categories of apps.

Thus standby states behave differently in energy dissipation
compared to real idle states.

B. APP DISTRIBUTION
First of all, we show the time and energy of a smartphone
in use compared to when it is in standby in Figure 6(a).
It shows that users use their phones for about 20% of the total
time (around 4.8 hours each day), while consuming 45% of
the total energy. More than half of the energy are consumed
during standby while users are not explicitly operating on the
phones. It indicates that even when the phone is in standby
mode, there are still many activities going, such that about
half of the battery are consumed during standby. We will
analyze this phenomenon further in Section V-C.1.

Next, we consider the different categories of apps used.
Figure 6(b) and Figure 6(c) present the distribution of each

app category based on their total use of time and energy
consumption. Among these app categories, the most used
apps are chat tools and Internet apps, which occupymore than
70% in total usage time. Internet apps and games are more
energy-hungry apps that consume 67% of the total energy
consumption. We also notice that phone calls only record
6% of total usage time and 5% of total energy consumption,
which shows that voice calling is far from the mostly used
feature on a smartphone. A majority of people tend to use
their smartphones as a ‘‘minicomputer’’ to access the Internet,
play games and read e-books, instead of as a traditional
feature mobile phone simply making phone calls.

In contrast, Bohmer’s user study of about 4,100 partici-
pants [12] found that smartphones are still used mostly for
text message and voice calling. But their work only consid-
ered the frequency of the usage. Our result shows that the
usage time of text message and voice calling is much less
than other smartphone apps.

C. ENERGY CONSUMPTION RATE OF APPS
To analyze the energy consumption patterns of different apps,
we calculate an average energy consumption rate for each app
category.

Figure 7 shows the energy consumption rate for each app
category (including video, calling, sms, standby, etc.). The
numbers here are adjusted to the default battery capacity for
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FIGURE 7. Energy consumption rate of app categories.

each phonemodel, thus all numbers are absolute consumption
rate, instead of percentages obtained in the Android system.

We notice that apps related to gaming is the most power-
consuming apps, with a 336.15 mA energy consumption
rate. Other big power consumers are voice calling and video
apps, whose energy consumption rates are about 252.24 mA
and 232.54 mA, respectively. Chat tools and text messaging
consume the least energy, the energy consumption rate is
103.91 mA. There is a 3-4x difference in energy consumption
rate among these app categories.

1) STANDBY ENERGY
One surprising result is the power consumption rate for
standby, which is more than 58mA on average. Based on our
measurements, an ideal idle state with no activities normally
consumes only around 5mA, which shows a 10X difference
between an ideal idle state and the actual standby mode.

FIGURE 8. Measured power current after a user turned off the screen.

In order to understand the battery dissipation pattern dur-
ing standby, we performed an experiment with the Power
Monitor [9] to record the power current data, which is shown
in Figure 8. We did not run any apps on the phone. The
screen is turned off at the 2nd second in the figure. We can
see that after the screen is turned off, the power did not go
down immediately. It took about 6 seconds before the phone
is actually ‘‘idle’’ and the current is stabilized at a low level.

Besides the activities right after screen off, other activi-
ties could still happen during standby, such as background
services and apps, network data transportation, reading or

FIGURE 9. Distribution of smartphone using time per day for
50,000 users. The average using time per day for all users is about
4 hours.

writing the SD cards, etc. This suggests that the standbymode
could still consume significant energy in smartphones, which
could explain why the standby time of smartphones are much
shorter compared to that of traditional feature phones.6

VI. DIVERSITY OF MOBILE USERS
We have shown that mobile users use smartphones to perform
awide variety of tasks compared to traditional feature phones.
In order to understand the behavior of different mobile users,
we perform a diversity study to compare different users based
on their usage time distribution.

A. USER-RELATED DATA FILTERING
Before conducting user diversity analysis, we need to identify
user characteristics. In order to classify users based on their
usage time, each user should have a relative long power-
on time. Although we collect the traces from the previously
evaluated 80,000 valid users during a four-week period, some
of the users have a very power-on time that is not meaningful
to perform further study. Thus we first perform some filtering
work to remove these users. Specifically, we removed the
users whose total power-on time are less than 5 days. The
final number of remaining users in this diversity study is
about 50,000.

B. USER CLASSIFICATION
To classify users based on their using frequencies, we calcu-
late average using time per day for each user. This using time
considers the total time of user apps such as video, games and
phone call, etc. Figure 9 shows the distribution of average
using time per day of the 50,000 users. We note that the
variation of using time per day is from about 5 minutes for the
least frequent users to about 20 hours for the most frequent
users.

This result shows that the using time vary widely among
different users. Based on this data, we classify the top 20%
of the users as heavy users, while the bottom 20%of users
are regarded as light users. Accordingly, the rest 60% of the

6With a 50mA average power and a 1500mAh battery, we can roughly
calculate that the battery on a typical smartphone could last about 30 hours
without heavy use, which is consistent to our observation.
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users are classified as normal users. As a result, the heavy
users use their smartphones more than 6 hours per day, while
the light users use their smartphones less than 1 hour per day.
On average, the using time of heavy users is 8.6 hours per day,
while the using time of light users is about 0.9 hours. This gap
in using time demonstrates the diversity of smartphone users.

In comparison to previous results, Falaki’s study of
255 users [2] showed that different users interact with their
phones 10-200 times a day on average; the mean interaction
length of different users is 10-250 seconds. With some simple
calculations, users use their phones 3.79 hours a day on
average, which is very close to our result of 4 hours. Besides,
Bohmer’s user study [12] showed a result that mobile device
users spend almost an hour a day using apps. This using time
is just the level of light users in our study, while heavy users
using apps for about 8.6 hours per day.

TABLE 3. App distribution of different user groups(Heavy and Light users
represent the top/bottom 20% of users based on their total using time
per day, while the rest are categorized as Normal.).

C. USER DIVERSITY IN APPS USED
We compare the distribution of using time and battery con-
sumption among different app categories for three groups
of users, respectively. Table 3 presents the comparison
results.

For heavy users, the category ‘‘phonecall’’ ranks the last
among the five app categories if we do not account for
‘‘standby’’ and ‘‘others’’. However, ‘‘phonecall’’ ranks in the
third place for light users. This shows that heavy users are
more intended to user their smartphones for various purposes
other than voice calling.

Another interesting result is that while heavy users spent
about 40% of their batteries on standby mode, light users
spent almost 80% of their batteries on standby. This is
because light users only use their phones for less than one
hour on average, thusmost of the battery are consumed during
standby.

As expected, the using time and energy of normal users
generally falls between the heavy and light users.

Soikkeli’s user study of 140 users [13] showed that the
smartphone usage is highly diversified across users, and thus
an average user does not represent very well the people as a
whole. Their work denoted the diversity of the differences of
usage sessions among different users, while our work points
out that the app distribution in using time among different
types of users is also highly diversified.

D. USER DIVERSITY IN CHARGING
HABITS AND BATTERY LIFE
because of the difference of app usage between heavy and
light users, we want to check whether it will cause some
differences in their charging habits and battery life.

Figure 10(a) presents the distribution of charging frequen-
cies of heavy users and light users. On average, heavy users
charge their batteries every 23 hours, while light users charge
their phones every 29 hours. These results suggest that heavy
users tend to charge more frequently. However, the results
also shows that most users still need to charge their smart-
phones at least once every day, even when they only use their
phones for less than an hour every day.

Figure 10(b) shows the battery life distribution of heavy
users and light users. The difference of battery life between
heavy users and light users is also obvious. The heavy users
have a relatively higher discharging rate but a shorter battery
life. On average, the battery life of heavy users is 21.2 hours,
while the battery life of light users is 28.8 hours.

Although the difference in battery life is not so big com-
pared to the average using time per day, it still shows a
more than 30% difference. The explanation here is that most
smartphones are running various background services, such
that standby power is much larger compared to traditional
feature phones, as shown in earlier results.

Oliver’s study of 20,100 BlackBerry users [4] divided the
users into 3 types by charging habits. The first type is the
most aggressive energy consumers, consuming nearly 4.8%
of their deviceąŕs energy per hour. Thus the battery lifetime
is about 20.8 hours, which is close to our result of heavy users.
They did not provide the exact average discharge rate of the
other two types of user. However, the discharge rate of our
light users is about 3.47% per hour, which seems to be a little
higher compared to their other two types of user according to
the figure in their paper.

VII. DISCUSSIONS
Based on our analysis, we present some observations in this
section and also discuss the limitations of our study.

A. OBSERVATIONS
We performed a large-scale study on smartphone apps and
batteries on over 80,000 users in the wild. Although we could
only collect coarse-grained battery traces with a lightweight
service, we are able to calculate energy consumption rate
for each app accurately with a statistical-based method. With
the results and analysis presented above, we can draw the
following important observations:
• Only a very small percentage of smartphone time and
battery is actually used for the traditional ‘‘phone’’ pur-
pose. On average, 5% of battery and 6% of usage time
are spent on voice calling features. This confirms our
assumption that smartphones are used for a variety of
purposes, besides its traditional purpose as a phone.

• Power consumption during standby is actually much
higher than expected. Our results show that the
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FIGURE 10. Heavy Users v.s. Light Users. (a) Charging frequency. On average, heavy users charge their
battery every 23.3 hours, while the light users charge their battery every 29 hours. (b) Battery life.
On average, the battery life of heavy users is 21.2 hours, while it is 28.8 hours for light users.

average power consumption during screen-off is 10X
higher than the ideal idle state, which suggests that we
should investigate what is actually going on when the
phone is not used. We should also study optimization
methods for not only active running apps, but also back-
ground activities. Although several recent work have
attempted to optimize background activities and standby
energy [14], [15], more efforts are needed to investigate
it comprehensively.

• We show that the charging habits of smartphones are
different from feature phones, when users typically only
charge their phones when battery capacity reaches a low
threshold.Due to the short battery life, smartphone users
tend to charge their phones more frequently, but each
charge lasting for a relatively short period.

• Despite the widely circulated complaints on the short
battery life of many smartphones, we found that most
phones could be used for more than a day. Considering
the fact that most users accept the reality that many
smartphones need to be charged every night, the func-
tionalities of smartphones have weighted more than the
shorter battery life.

• Although there are thousands of apps in variousmarkets,
only a small fraction (i.e. 1%) of those apps are fre-
quently used. Researchers performing application stud-
ies (especially energy researchers) should turn focus to
those apps used more frequently and consuming more
energy.

• The energy consumption rates of different apps differ
greatly. Energy researchers should try to understand
the underlying differences between the most and least
energy-consuming apps, and focus on analyzing and
optimizing the more energy-hungry apps.

• Smartphone users vary widely on using time of apps
per day. We chose a representative set of heavy users
and light users to perform a user diversity study.
We found that the two groups of users differ significantly
in charging habits and the distribution of frequently used

apps. Heavy users tend to charge more frequently, while
having a shorter battery life.

B. LIMITATIONS
There exist some limitations in our study: some of them are
inherent to this type of study, some are our choices in order
to simplify the study.

For simplicity, we choose to attribute all energy consumed
during a specific period to the foreground apps. Although
we are able to retrieve the list of background processes and
services, it is very difficult to distribute battery consump-
tion to each of them. Neither did we consider the energy
consumed by the operating system, because it is difficult
to perform a more fine-grained analysis. Nonetheless, the
energy consumption by background services and OS itself is
very important and should be studied with further techniques.

For a large-scale study, we focus on app categories and
how they consume battery power. We have taken into con-
sideration some device information such as phone type and
battery capacity. However, there are much more device fea-
tures that could affect the battery consumption, such as screen
sizes, standard CPU frequency, network access traffic, etc.
We believe more detailed study on these factors could reveal
many important results.

VIII. RELATED WORK
Energy consumption of smartphones and battery life issues
have been extensively studied ever since smartphones have
emerged. We present a brief overview of some closely related
work in the following three categories: user studies on smart-
phone battery and app usages, studies on how apps consume
energy, and smartphone energy modeling and optimization.

A. USER STUDIES ON SMARTPHONE BATTERY/APPS
Several large-scale user studies have focused on users and
user-battery interactions. Falaki et al. [2] studied 255 smart-
phone users, characterized user activities and apps, and the
impact of those activities on network and energy usage.
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Banerjee et al. [3] designed a user- and statistics-driven
energy management system, and conducted a user study,
which shows that their system could harvest excess battery
energy for a better user experience without a noticeable
change in battery lifetime. Ferreira et al. [11] presented a
4-week study of more than 4,000 people to assess their
smartphone charging habits to identify power intensive oper-
ations and to provide interventions to support better charg-
ing behavior. Oliver and Keshav [4] conducted one of the
largest-scale study to measure the energy consumption of
20,100 BlackBerry smartphone users, and predicted energy
level within 72% accuracy in advance.

There are also some work studying app diversity on smart-
phones. Shepard et al. [16] presented LiveLab, a methodol-
ogy to measure real-world smartphone usage and wireless
networks with a reprogrammable in-device logger designed
for long-term user studies. They also present an iPhone 3GS
based deployment of LiveLab with 25 users for one year to
reveal different aspects of users and apps on smartphones.
Böhmer et al. [12] performed a user study with 4,100 peo-
ple for about 120 days to collect app usage data. They
presented results on user behaviours including app usage
over time, correlation of different app categories, and so on.
Soikkeli et al. [13] detected end user contexts, and extracted
smart phone usage session information from handset-based
data of 140 smart phone users. Their usage session analysis
found that smart phone usage is highly diversified across
users.

These existing studies have revealed different aspects of
the users and apps on the smartphones. However, no previous
work have studied how batteries are consumed across differ-
ent apps, which is the focus of our work.

B. STUDIES ON APP ENERGY CONSUMPTION
In order to study energy consumption of apps, many work
have presented various energy models and conducted energy
profiling and analysis based on these models.

1) ENERGY MODELING
CABLI [17] modeled the quantitative relation between sys-
tem context attributes and the battery discharge rate based
on multiple linear regressions. WattsOn [18] builds energy
models based on hardware components of smartphones.
AppScope [6] is an Android-based energy metering system
to monitor hardware resource usage of an app when the app
is running. The energy consumption of the app could be cal-
culated through their hardware energy model DevScope [19].

2) ENERGY PROFILING AND ANALYSIS
Pathak et al. [5] performed a case study on the energy con-
sumption of six popular smartphone apps with eprof [20],
which could be used to perform detailed energy profiling
using a system-call-based power model. They have found
some issues in app energy consumption such as energy dissi-
pation in third-part library, user data tracking and ‘‘wakelock
energy bugs’’. In order to understand the energy consumption

of background activities, EnTrack [21] is a system facility for
analyzing energy consumption of Android system services.

3) ENERGY BUGS
A more comprehensive work on energy bugs [22] collected
energy bugs from a few popular smartphone forums and bug
reports, and classified the energy bugs into several groups.
eDoctor [7] detected the energy bugs by finding the incon-
sistencies in resource usage and energy consumption when
an app is running. eDoctor also recorded system events to
analyze the reason of the abnormal energy consumption.
Banerjee et al. designed an automated test generation
framework that detects energy hotspots/bugs in Android
applications [8].

Carat [23], [24] presents a collaborative method to diag-
nose abnormal energy drains of smartphone apps with about
400,000 users. They compared the average discharge rate
among different apps and different users to detect energy
bugs.

The experiments in most of these studies are typically
performed in a controlled environment with a limited number
of devices. Without large-scale user data, it will be difficult to
gain real-world results on how batteries are consumed across
different apps. Although Carat [24] is also able to measure
app energy consumption rate in thewild, their main purpose is
to diagnose energy issues and improve app energy consump-
tion through a collaborative method, instead of analyzing the
energy consumption issues for a large-scale users and mobile
apps, which is the main purpose of this paper.

C. SMARTPHONE ENERGY OPTIMIZATION
Besides energy analysis and user study, many research work
have proposed different techniques to reduce energy con-
sumption of mobile systems from various angles.

One important direction is reducing CPU energy
consumption. For example, E-MiLi [25] reduces the
power consumption in idle listening with sleep scheduling.
Catnap [26] reduces energy consumption of mobile
devices by allowing them to sleep during data transfers.
Song et al. [27] and Zhao et al. [28] use different strategies
to scale down the CPU frequency in interactive applications.

For network energy optimization, TailEnder [29] resched-
ules network packets to reduce the ‘‘tail energy’’ and trade-
off with the network latency. Qian et al. [30] analyzed
the periodic data transfers in apps with a trace contains
1.6 million network packets and compared several opti-
mization technology such as fast dormancy, piggyback and
batching. Perrucci et al. [31] optimized the cellular network
energy by switch the network types between 2G and 3G.
Xu et al. [14] optimized the email sync energy in standby
mode by scaling the email size, inbox size and pull/push
method. Ding et al. [32] modeled the relation between wire-
less signal strength and the network energy and optimized
the network energy with a network-quality-aware method.
ADEL [33] used taint analysis on app source code to find
unused data downloaded from the internet.
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For screen/display energy optimization, Lin et al. [34] pro-
posed a video backlight scaling method via tradeoff between
energy consumption and user experiences. FOCUS [35] saves
display energy by dimming the less focused screen areas.
Dong et al. [36] modeled the screen energy by pixel colors
and optimized energy by changing theme colors.

In order to help users understand the power consumption,
Chon et al. [37] proposed a system to pinpoint the major
causes of battery drain in terms of both hardware and software
aspects and phone configuration to extend application usage
times.

Although this paper is not dealingwith energy optimization
directly, we hope to identify more optimization opportunities
based on the analysis.

IX. CONCLUDING REMARKS
We have performed a large-scale battery study on over
80,000 smartphones and presented several sets of results
related to apps and batteries based on our collected data.
We have applied a method to calculate energy consumption
rate of each app based on large-scale coarse-grained battery
traces. Our data analysis found many interesting statistics
and facts on app usage patterns, app energy consumption
rate and mobile user diversity. We have also presented some
observations based on the analysis results.

We believe that this type of study is able to reveal more
information that could not be otherwise discovered in a small-
scale lab study on limited number of devices. Our future
work include performing further data analysis and exploring
possible optimizations based on these findings.
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