Journal of Network and Computer Applications 1 (§an) mma—sm

Contents lists available at ScienceDirect

NETWORK&
COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Security model oriented attestation on dynamically reconfigurable
component-based systems

Liang Gu, Guangdong Bai, Yao Guo *, Xiangqun Chen, Hong Mei

Key Laboratory of High Confidence Software Technologies (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University, Beijing 100871. China

ARTICLE INFO ABSTRACT

Article history:

Received 1 August 2010
Received in revised form
14 January 2011
Accepted 9 March 2011

As more and more component-based systems (CBS) run in the open and dynamic Internet, it is very
important to establish trust between clients and CBS in mutually distrusted domains. One of the key
mechanisms to establish trust among different platforms in an open and dynamic environment is
remote attestation, which allows a platform to vouch for its trust-related characteristics to a remote
challenger. This paper proposes a novel attestation scheme for a dynamically reconfigurable CBS to
reliably prove whether its execution satisfies the specified security model, by introducing a TPM-based
attestation service to dynamically monitor the execution of the CBS. When only parts of the dynamic
CBS are concerned, our scheme enables fine-grained attestation on the execution of an individual
component or a sub-system in the dynamic CBS, such that it involves only minimal overhead for
attesting the target parts of the CBS. With flexible attestation support, the proposed attestation service
can attest a CBS at the granularity from an individual component to the whole CBS. As a case study, we
have applied the proposed scheme on OSGi systems and implemented a prototype based on JVMTI for

Keywords:

Remote attestation
Component-based systems
Security model

Security policy

Dynamically reconfigurable CBS

Felix. The evaluation results show that the proposed scheme is both effective and practical.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to the achievements from both academic and indus-
trial organizations in the past few years, component-based
systems (CBS) have been widely applied in various applications,
among them many are complex mission-critical systems. With
the rapid development of Internet, many dynamically configur-
able CBS nowadays are deployed on open computer platforms
across heterogeneous domains or over the public Internet, such as
systems based on CORBA, .NET, J2EE and Web Services. These
dynamic CBS can be configured dynamically and the components
in CBS can be updated and replaced at runtime. The security and
privacy of its clients greatly rely upon the sound operation of
these systems, thus the trustworthiness of the execution of
dynamic CBS is especially important.

In an open and dynamic environment, a client or user often
pays close attention to whether the computation results of a
software component in a dynamic CBS are of integrity, or a
specific dynamic CBS runs as expected. For example, when an
end user submits his personal information, such as a password or
a credit card number, he may require that the corresponding
process in the server-side CBS will protect his information
properly and no other unauthorized processes are able to obtain
it. Meanwhile, a system administrator may want to check

* Corresponding author. Tel.: +86 10 62753496.
E-mail address: yaoguo@sei.pku.edu.cn (Y. Guo).

1084-8045/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jnca.2011.03.014

whether the execution of a CBS runs as configured. Two aspects
are concerned in order to confirm that a dynamic CBS behaves
according to a given security model: What mechanisms are
employed to protect the execution of software components and
CBS? How to confirm that these employed mechanisms are correctly
enforced?

Many mechanisms have been proposed to enhance the secur-
ity of CBS (Lindqvist and Jonsson, 1998; Khan and Han, 2002; Sun
et al.,, 2008). However, it is difficult for the existing security
mechanisms to establish trust on dynamic CBS in an open and
dynamic environment such as the Internet, because of the
following reasons:

e First, the root of trust for these traditional security mechan-
isms would be vulnerable if applied to dynamic CBS. Existing
security mechanisms for dynamic CBS are mostly based on
pure software. However, software is vulnerable for attacks.
Thus these security mechanisms themselves may also suffer
from attacks;

e Second, the complexity of dynamic CBS is ever increasing and
it may be comprised of third-party components. The system
behaviors may be unpredictable and the management of these
dynamic CBS becomes more difficult. Furthermore, the vulner-
abilities in a component may compromise the whole CBS
(Lindqvist and Jonsson, 1998);

e Third, in open networks, the client and dynamic CBS may run
in heterogeneous and distributed environments in mutually
distrusted domains, thus the traditional trust management

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.03.014
mailto:yaoguo@sei.pku.edu.cn
dx.doi.org/10.1016/j.jnca.2011.03.014
dx.doi.org/10.1016/j.jnca.2011.03.014

2 L. Gu et al. / Journal of Network and Computer Applications 1 (1ums) na-um

mechanisms based on cryptographic protocols (Blaze et al.,
1996; Li et al, 2002) are not adequate to establish trust
between clients and the dynamic CBS;

e Furthermore, a dynamic reconfigurable CBS (Hnetynka and
Plasil, 2006) can evolve because of component updates, run-
time environment changes or user modifications. A CBS
administrator may incidentally modify the CBS configuration
into a fault state at runtime. The runtime deployment and
update of components in CBS may also cause anomalies in the
system.

The trusted platform module (TPM) (Trusted Computing
Group, 2005) proposed by the trusted computing group (TCG)
has received broad interests from both academia and industry.
TCG attestation allows a challenging platform, usually referred to
as a challenger, to verify the configuration integrity of a remote
platform (i.e. an attester). Recent years have witnessed various
evolutions out of the basic TCG attestation in many dimensions
(Sailer et al., 2004; Haldar et al., 2004; Jaeger et al., 2006; Chen
et al, 2006; Gu et al, 2008a; Kil et al., 2009). We use TCG
attestation (Trusted Computing Group, 2005) as a building block
to attest the security model for dynamic CBS execution.

In this paper, we propose a novel approach to attest whether
the execution of a dynamic CBS is in compliance with the given
security model of a challenger. A security model usually depicts
the higher level specification which restricts the execution of
systems. If a system satisfies a specific security model, it means
that the system is at a specific security level. Security models are
usually expressed in security policies in systems and the execu-
tion of a CBS is usually constrained by these policies. In order to
prove whether the execution of a dynamic CBS is at a specific
security level, we introduce an attestation service, which
leverages the features of TPM, to monitor and record the evi-
dences for attesting the correct enforcement of the security
policy. As the dynamic reconfigurable CBS may change its security
state rapidly, the proposed attestation service dynamically moni-
tors the security related objects in the system.

Facing the challenges for establishing trust on the dynamic
CBS in open environments, our scheme employs several techni-
ques to provide reliable attestation on their executions. For
parties from mutually distrusted domains in open networks, our
scheme employs TPM as the strong root of trust for attesting
dynamic CBS in open environments. With these runtime evi-
dences, a challenger can attest the execution of dynamic CBS in
two steps: first, it confirms that the security policy is correctly
enforced by the runtime security mechanism; second, it confirms
that the enforced security policy of CBS is in compliance with the
expected security model. Furthermore, when only an individual
software component or a subsystem in the CBS is concerned, our
scheme is able to attest its execution by checking itself and other
components on which it depends, without attesting the whole
CBS. As a result, our scheme is able to provide flexible attestation
on dynamically reconfigurable CBS with minimal overhead.

This paper makes the following main contributions:

e To the best of our knowledge, this is the first work for applying
TCG-based attestation techniques specifically on dynamically
reconfigurable component-based systems to attest the security
model of CBS execution.

e The proposed attestation scheme provides a flexible and fine-
grained attestation mechanism which leverages the features of
component-based software and TCG technologies to reliably
attest the execution security of dynamic CBS in open networks.

e With TPM, our scheme has a strong root of trust for trust
evaluation on a dynamic CBS. With our scheme, it is reliable to

conclude whether a software component or a CBS executes as
expected according to the specified security model.

e We applied the proposed scheme on the standard OSGi plat-
forms, and implemented a prototype of attestation service for
Felix (Apache Felix, 2010), which is an OSGi framework
instance. The performance of the prototype is studied in the
case study and it demonstrates our scheme in practical usage.

The rest of the paper is organized as follows: Section 2
introduces the background, including two motivating scenarios,
TCG attestation and security model. Section 3 presents our solu-
tion for attesting CBS. Section 4 introduces the case study and
evaluation of our scheme: attestation on an OSGi system. Section 5
introduces related work and Section 6 concludes the paper.

2. Background
2.1. Motivating scenarios

We will first introduce two typical scenarios for our scheme.

Online shopping system: Many online shopping systems are
implemented based on J2EE. At the checking out stage, it usually
involves submitting a user’s personal information. The consumer
can feel more comfortable, if the system can attest that it does not
reveal any personal information to untrusted processes in the
system. With the help of our attestation scheme, online consumers
can request an attestation on all components related to the process,
to ensure that his personal information is protected as expected.

CBS administration: The administrator of a CBS may rely on
runtime monitoring and reporting mechanisms to check whether
the system executions as expected. However, in a dynamic and
open environment, the monitoring and reporting mechanisms
require a strong root of trust to guarantee their trustworthiness.
With the support of attestation, the administrator can evaluate
the trustworthiness state of the CBS reliably, and carry out the
administration activities more reliably.

2.2. Trusted computing and remote attestation

A series of TCG specifications have been released in the past 10
years and TCG still keeps on updating these specifications
according to evolving application requirements. The trusted plat-
form module (TPM) is introduced as the core in these specifica-
tions. The TPM is a tamper-resistant module, designed to resist all
software attacks and moderate hardware attacks. It encloses a
non-volatile storage, a set of platform configuration registers
(PCRs) and an engine for cryptographic operations.

TCG remote attestation was introduced to attest the config-
uration integrity of remote platform. A typical TCG-attestation is
carried out as follows. First, the challenger sends the remote
attestation request with a random nonce to the attester platform.
After receiving the challenge request, the attester platform
retrieves the corresponding stored measurement log (SML), and
calls TPM to sign the relevant PCR values using the nonce and its
attestation identity key (AIK). Then the attester platform collects
the credentials vouching for the TPM. The signature on the PCR
values and related SML records, together with the credentials, is
sent back to the challenger as the attestation response. The
challenger verifies the signature and compares the received plat-
form measurements with known-good ones, which can be
retrieved from its local storage or a trusted third party.

Existing remote attestation schemes mostly come into three
categories: integrity attestation (Sailer et al., 2004; Jaeger et al.,
2006; Garfinkel et al., 2003), property-based attestation (Chen
et al., 2006; Poritz et al., 2004; Sadeghi and Stble, 2004) and

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

L. Gu et al. / Journal of Network and Computer Applications 1 (1an) - 3

semantic attestation (Haldar et al., 2004; Shi et al., 2005; Alam
et al., 2008; Gu et al., 2008a, 2008b; Nauman et al., 2009; Gu et al.,
2009; Kil et al., 2009; Baiardi et al., 2009). Integrity attestation is
based on TCG attestation and mostly tries to attest the config-
uration integrity of platforms. In order to protect the configura-
tion information of the attested platform, property-based
attestation was proposed to attest platforms by checking the
specified properties. The property is certificated via checking the
configuration state by a trusted third party. The semantic attesta-
tion is used for proving some higher level properties of the target
system or platform.

2.3. Security model and security policy

A security model is a high level specification or an abstract
machine description of what the system does (Goguen and
Meseguer, 1982). A security model defines some high level rules
for information flow in the system. For information flow security,
confidentiality and integrity are the most concerned factors. So
most of the existing security models come into two categories:
confidentiality model and integrity model. The typical confidenti-
ality model is Bell-La Padula model (1973). Biba model (1977)
and Clark-Wilson model (1987) are the most representative
integrity models. Other famous security models include role-
based access control (RBAC) model (Sandhu, 1998), lattice model
of information flow (Denning, 1976). The security level of a
system can be obtained by checking whether the information
flow in the system satisfies certain security models.

In practical usage, security policies convey specific security
models. A security policy is a set of rules governing subjects and
objects in system, and it specifically restricts the behaviors of subjects
(processes and users) in system (Boutaba and Aib, 2007). For example,
it can specify which subjects can access which objects. A security
policy defines the security requirements for a given system.

A CBS usually employs access control policies to restrict the
interactions among components in a system. So the problem of
attesting whether a CBS behaves as expected can be reduced to two
sub-problems: whether the security policy satisfies the expected
security model; whether the security policy is correctly enforced.

3. Attestation on dynamically reconfigurable component-
based systems

Challengers may expect that the target CBS behaves in a
specific manner. These kinds of expectations on a CBS usually

reflect some higher level specifications on it. Specifically, the
security policy for CBS at runtime specifies such kinds of expecta-
tion. We will reduce the problem of how to attest a CBS to the
problem of how to attest whether the execution of the CBS
satisfies a specified security model. Our scheme for attestation
on a CBS needs to attest two objectives: whether the security
policy enforcement mechanism on the specified CBS is correctly
enforced; whether the enforced security policy satisfies the
specified security model.

Attestation on CBS involves three phases. In the preparation
phase, the attestation objects are identified according to the
specific security model and other application requirements. At
runtime, attestation service records the execution of relevant
parts in the CBS, as well as the security policy enforcement PE. At
verification time, challenger CH can check these proofs to attest
whether the expectation is satisfied, i.e., whether the execution of
a CBS is in compliance with a given security model.

Threat model: In our scheme, we employ the threat model of
TCG attestation (Trusted Computing Group, 2005). We assume
that sophisticated physical attacks on the security chip (TPM) are
not applicable for ordinary application usages. So the trust on
TPM on the host platform of the target CBS can be attested even in
the case of other normal physical attacks and software based
attacks. In the software layer of the host platform, the execution
of the TPM driver should be guaranteed. Based on the TPM, the
runtime environment of CBS can be attested accordingly, either
statically or dynamically. For the target CBS, the administrator or
owner of the host platform can manipulate the states of the CBS,
including its components and configurations. The attackers on the
host platform can modify the components and configurations in
the target CBS.

3.1. Scheme overview
3.1.1. Scheme architecture

The architecture of our scheme is shown in Fig. 1. Two parties
are involved: the challenger (CH) and the platform (H,) which
hosts the CBS. The challenger can be a remote user of the CBS, a
local system administrator, or even a process. The platform H, is
supposed to be equipped with a TPM that serves as the root of
trust. The security policy of CBS is enforced by the policy enforce-
ment (PE) in its framework layer. PE consists of a policy decision
point, policy enforcement point and policy records. We introduce
an attestation service AS with corresponding attestation policy in
the runtime environment layer for CBS. The AS employs the TPM
to dynamically monitor and record the runtime execution of CBS

Component-Based System

Resource

Requestor
v

Policy
Decision Point

. T F Attestation
Challenger CH | Service AS

| ses
, Policy

Enforcement Point

Policy
Runtime |Other
Environment Layer |Domains
Platform Layer
TPM

Fig. 1. The architecture for attesting component-based systems.

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

4 L. Gu et al. / Journal of Network and Computer Applications 1 (1ums) na-um

and the function of PE. In order to support the secure domain for
runtime environment layer, the platform layer may employ
trusted virtual machine (Garfinkel et al., 2003) to provide an
isolated environment. The communications between CH and AS
can be protected by cryptographic protocols.

3.1.2. Attestation service

AS is introduced in the foundational layer in the runtime
environment of CBS. AS should be able to monitor the execution
of CBS and the security policy enforcement mechanism PE.
According to the specific security model and other attestation
requirements, all objects required to be attested are identified as
an Attestation Objects List (AOL). AS is responsible for recording
the states and behaviors of these attestation objects. After all
required proofs for attestation are collected, AS delivers them to
the challenger.

The attestation policy enables the attestation service to sup-
port flexible attestation according to different application require-
ments. For example, when parts of the CBS are concerned in a
specific attestation, only these related objects are included in the
AOL. The attestation policy can be configured before the execution
of CBS and reconfigured according to the challenger’s requests at
runtime. Above all, the attestation policy tells the attestation
service about which objects are required to be monitored, and
how to monitor them for some special applications.

3.2. Security model

A security model consists of two parts: (i) the system char-
acteristic model: the system model for non security related
system features; (ii) the security property model: the security
objective.

We introduced a general system model according to Goguen
and Meseguer (1982) to depict the component behaviors and
policy change behaviors in a CBS. A system can be represented as
a state machine M, defined as (U, S, SC, Out, Capt, CC, fout faor fedor
So, t()):

e U: the set of subjects, which can be users and components in
CBS. Its element is denoted as u.

e S: the set of system states, which are determined by the states
of all its subjects and objects, and its element is denoted as s.

e SC: the set of state changing commands and its element is
denoted as sc.

e Out: the set of all possible outputs.

e Capt: the set of capability tables which specify the permission
of subjects, and these capabilities are determined by the
system policy. Let C=SC|JCC, then Capt={U x S— p(C)},
where ¢(C) is the powerset of C.

e CC: the set of policy state changing commands which change
the Capt, and its element is denoted as cc.

o foue(s,Capt,u) : S x p(Capt) x U—Out, a function, which gives
specific outputs when the system is in a specific state s, with
a specific user and a specific capability set.

® fyo(s,Capt,u,sc) : S x p(Capt) x U x SC—S, a
change function.

® fo(s,Capt,u,cc) : S x p(Capt) x U x CC— p(Capt), a capability
set state change function.

e Sy the initial machine state.

e to: the initial state of capability set.

system state

According to the system model, system behaviors can be
considered as the execution of a sequence of state change
commands (sc or cc). The capability table restricts the runtime

behaviors in CBS. The above model can express both static policies
and dynamic policies.

The system state set S can be expressed in a more concrete
way according to a specific security model. For simplicity, we
employ BLP confidentiality model as an example. According to
Bell and La Padula (1973), we express S in a more concrete model
which concerns mostly about the state of a system, while the
policy change behaviors are not specially concerned:

e U: the set of subjects, which can be users and components in
CBS. Its element is denoted as u. The set of trusted subjects is
Ur = U, and the set of subjects with undetermined trust state
can be denoted as U’, where U’ U Ur = U.

e O: the set of objects and its element is denoted as o.

e [: the set of security levels and its element is I, and all
elements in L is partially ordered.

o f=(fofufc): three level functions: object level function
fo : O—L, subject level function fy : U—L, current subject level
function fc : U' - L.

e A: access modes A={e,r,a,w} corresponding to execute, read,
append and write.

e M: access control matrix M : S x O— p(A).

e b: current access right b = (5;,0;,x) €S x O x A;

e S: a set whose elements are system states, which are deter-
mined by the states of all its subjects and objects, and its
element is denoted as s, state s=(b,f,M,H) with f=(fo.fs.fc) and
H is a hierarchically structured set of objects;

Based on the above concrete model, we may express security
properties in the specified security model. For example, the “no
read up” property in the BLP model can be expressed as:
VseS,0€0:((s,0,1) e bv(s,0,w) € b) = fs(s) > fo(0).

With the system model and the specified security property,
the runtime security policy can be implemented accordingly.
Meanwhile, according to security property requirements, i.e.,
the specified security property, a verifier can check whether the
security policy satisfies the specified expectation.

3.3. Security model oriented attestation

At runtime, a security policy instance is enforced to control the
behaviors of CBS. If a security policy is in compliance with a
security model, the security policy can be viewed as an instance
of the security model. In order to attest the security model of the
specified CBS, the challenger needs to check whether the enforced
security policy satisfies the security model and whether the
security policy is correctly enforced.

Compliance between security policy and security model: The
policy change behavior can be denoted as: Capt;, 1=fcq0(s,Capt;,
u,cc). Capt; ;1 and Capt; are security policy instances and they are
supposed to be in compliance with the expected security model. A
security model depicts some properties on the capability sets.
Thus, the compliance checking between the security model and
the policy is to check whether the capability set holds these
properties.

For an enforced security policy instance, we may transfer these
access control rules into specified models, such as the state
machine model we just introduced. Then it is possible to employ
some automated tools to check whether the security policy is in
compliance with the specified security model or whether the
security policy has the specified security property. In the past
years, many techniques for property verification on policies have
been proposed (Kolovski et al., 2007; Zhang et al., 2005; Fisler
et al., 2005). With the broad adoption of eXtensible Access Control
Markup Language (XACML), it becomes practical to transfer these
security policy instances into XACML, and then carry out a formal

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

L. Gu et al. / Journal of Network and Computer Applications 1 (1) - 5

verification on the XACML based policy according to the specified
security model.

Trusted policy change behaviors: In a CBS, the components and
reflective components can be updated dynamically, and as a
result, the security policy can be dynamically reconfigured at
runtime. So the enforced policy can have many different versions
during the execution of CBS. All these different versions of
security policy are required to be recorded, in order to attest
the policy change behavior which transfers the system state from
Capt; to Capt; 4.

Trusted enforcement: The policy enforcement mechanisms
should be attested to make sure that these recorded policies are
correctly enforced at runtime. The AS monitors these security
mechanisms and records their states immediately before they
execute.

Trusted behaviors for system state change: A system state
change behavior is denoted as s; 1=fg0(S;,Capt,u,sc), where the s;
and s;, 1 are the system states before and after the behavior. In
order to attest that the behavior is correctly executed, we need to
attest that state s; and the commands sc are trusted. Meanwhile,
the identification of u should also be trusted. The trustworthiness
of Capt can be verified by the compliance checking.

3.4. Identifying attestation objects

A straight way for attesting the whole CBS is to monitor all
executed objects. However, as the constraints of a specific
security model, as well as different granularity requirements on
the target CBS, it is not necessary to monitor all objects in the
system. In our scheme, it involves a preparation phase to identify
attestation objects for runtime attestation. In the preparation
phase, all attestation objects involved can be identified by
analyzing the attestation requirements, including the given
security model and expected security policies, as well as granu-
larity and scaling requirements. The task of identifying attestation
objects can be carried out by different parties, such as challengers,
system administrators and program developers. We assume that
the preparation phase is carried out in a trusted domain or by a
trusted party.

In different applications, challengers may want to attest the
CBS at different granularity levels. As shown in Section 2.1, an
administrator has to consider the security of the whole system,
while an end user may only be interested in parts of the CBS, like
an individual component or a subsystem. Accordingly, the attes-
tation on a CBS can be handled in two different levels of
granularity: the whole CBS level or an individual component
level. In order to attest a subsystem in CBS, it is only necessary to
attest all individual components in the subsystem and their
dependent objects in the system. Thus our scheme considers the
solution for identifying attestation objects in two aspects: What
objects should be monitored to attest the execution of a whole
CBS? What objects should be monitored to attest the execution of
an individual component or a subsystem in a CBS?

3.4.1. Identifying attestation objects according to security model
When the behavior of a whole CBS is concerned, the attesta-
tion objects should be identified according to the given security
model. With the guarantee that the security policy is correctly
enforced, it is not necessary to monitor and record all subjects in
the CBS. For example, in the BLP model, the “no read up” property
guarantees that lower level entities can not read information from
the subjects in the higher level. The correct enforcement of BLP
can guarantee this property. So when the challenger needs to
attest that the information in the higher level components is not
leaked out to the lower level, the AS only has to monitor the

security enforcement mechanism and states of higher level
components, without recording the states and behaviors of the
lower level components. So the candidate components to be
monitored and recorded can be reduced according to a specific
security property. As a result, AS does not have to attest all
components in the system.

3.4.2. Identifying attestation objects according to granularity

When only parts of the CBS is concerned, such as an individual
component or a subsystem, the attestation on the CBS can be
carried out in a fine-grained and flexible approach: the target
software component can be attested with its dependent objects in
the system, according to the given security model. When only
parts of the CBS are involved, we will first identify the attestation
objects according to granularity and scale, and then reduce the
attestation object list according the security model. We will first
introduce how to identify attestation objects when only an
individual component is concerned. Then we will discuss how
to identify attestation objects for attesting a subsystem in
the CBS.

Identifying attestation objects for attesting on an individual
component: Normally, system functionalities are not solely encap-
sulated within one component. Therefore, the execution of one
component can be affected by the changes on another compo-
nent. In addition, replacing a new version of a specific component
might involve replacing the components on which it depends.
Informally, a dependency describes the relevance between two
objects such as instructions, procedures, processes in one plat-
form or even across two platforms. Traditional program depen-
dency analysis is usually concerned with the code level (Horwitz
and Reps, 1992). In this paper, we are particularly interested in
the dependencies at the component level, which are the relations
among software components within a system architecture.

The system dependency graph (SDG) (Horwitz and Reps, 1992)
represents the data dependencies and the control dependencies
among procedures of a program. These inter-procedural depen-
dencies include: (1) parameter-out/write: the data flows from the
first party to the second one; (2) parameter-in/read: the data
flows from the second party to the first; (3) non-parameter
method/function call: the first party calls the execution of the
second one, without data exchange. Data dependency in an SDG
refers to a program’s read or write access to data objects such as
configuration files. These dependencies can also be used to depict
the information flows among components and other objects in a
CBS. We may identify the directly and indirectly dependent
objects of the target component with a solution similar to Gu
et al. (2008a).

With these dependent objects and their dependencies rela-
tionships, we may once again reduce the dependent object list to
contain only these objects whose executions are restricted
according to the expected security model of the CBS.

Identifying attestation objects for attesting a subsystem in CBS:
When an subsystem in CBS is concerned, we may first identify the
dependent objects of all individual components in the subsystem
and then join these dependent objects together as the attestation
object list. Then we will reduce the attestation object list to
contain only these restricted objects according to the expected
security model of the CBS.

3.4.3. Updating attestation object list

As dynamically reconfigurable CBS can evolve because of
component updates and security policy modifications, the attes-
tation object list should be updated according to the dynamic
system changes. When the security policies are modified at
runtime, the set of restricted objects may be changed and the

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

6 L. Gu et al. / Journal of Network and Computer Applications 1 (1imi) na-um

attestation objects should be updated accordingly. For newly
added objects in the security policy, they are added into the
AOL; for objects removed from the security policy, they should
also be removed from the AOL. The component management in
CBS may also cause security changes. When a component is
installed or uninstalled in the CBS, the target component and its
dependent objects should be added into or removed from the AOL
accordingly.

3.5. Attestation procedure

The attestation procedure has two phases: measurement and
verification.

The measurement phase monitors and records the execution
of CBS according to the attestation object list. AS employs TPM to
record the states of related objects in AOL. The configuration of
the runtime environment layer and platform layer should be
recorded in order to attest its initialization integrity. Then the
state of security policy should be recorded before and after each
policy change event in CBS. As discussed in the previous sections,
AS needs to monitor and record the following activities related
with objects in AOL: the life cycle management of components in
the CBS, the enforcement of security policy and the restricted
behaviors of specified components. At the end of the measure-
ment phase, TPM generates a signature on these records with
TPM_Quote. Then the attestation service returns the policy files
and records to the challenger.

In the verification phase, the challenger verifies the runtime
measurements to check whether the CBS behaves as expected in
following steps:

1. The challenger checks the integrity of these records.

2. The challenger verifies the validation of AIK to attest the TPM.

3. The challenger verifies the measurements according to the
TPM Quote.

4. Finally, the challenger checks whether the policy instances are
in compliance with specified security model and returns the
attestation result.

If any of the above steps fail, the verification procedure will
terminate with a failure result.

4. Case study: attestation on OSGi systems

Facing the increasing requirements for corporative environ-
ments, such as security, scalability, reliability, etc., the open
service gateway initiative (OSGi) alliance (The OSGi Alliance,
2005) introduced the OSGi specification to facilitate the assembly
of systems with existing components and services. As a typical
CBS, the components in OSGi platform are implemented as
bundles, which can be dynamically and remotely deployed,
executed and maintained in open networks. With the widely
adoption of OSGi applications, like home service, there is an
urgent requirement for more dependable and trustworthy sys-
tems. However, the services in OSGi systems may come from
different vendors, and the open environment makes it difficult to
evaluate the trustworthiness of OSGi systems.

The security of OSGi is based on the Java security architecture
and it involves three levels (OSGi, 2010): the Java virtual machine,
the security features of Java language and the OSGi framework.
Policy management is introduced as an important mechanism to
support the execution of these three security levels. However, the
management of security policy is delegated to an assumed trusted
operator and it does not work for parties in different trust
domains. Without a root of trust, these security mechanisms are

not adequate to support trust establishment between clients and
OSGi systems in an open environment.

As a demonstration, we applied our scheme to support trust
establishment for OSGi systems. The proposed attestation archi-
tecture for OSGi systems is shown in Fig. 2. The host platform of
the target OSGi system should be equipped with a TPM which
serves as the root of trust. As a case study, we use Felix (Apache
Felix, 2010) to provide the OSGi framework.

An attestation service is introduced to monitor these security
enforcement mechanisms. We implemented the attestation ser-
vice based on the Java virtual machine tool interface (JVMTI,
2010). The attestation service employs TPM to record the states
and events of concerned targets at two levels: the JVM level,
including Java security manager and class loader; and the OSGi
framework level, including bundles and configuration files. The
attestation policy is designed to support fine-grained and flexible
attestation.

In order to attest the security model of the target OSGi system,
the security policy enforcement mechanisms in Java virtual
machine and OSGi framework should be monitored and recorded
for attestation. At the Java virtual machine level, the security
manager enforces the security policy and the class loaders are
responsible for loading and initializing these classes. At the OSGi
framework level, the life cycle management mechanism of bun-
dles and services cooperates with the permission mechanisms to
manage the coordination and communication among them. Three
types of permissions management are concerned: admin permis-
sion, service permission and package permission. Admin permis-
sion restricts the access to administrative functions of the
framework; service permission controls the access of services in
the system; package permission limits exports and imports to
trusted bundles. These security mechanisms cooperate to enforce
the given security policy which conveys a specific security model,
and they are monitored for attestation. The activities for permis-
sion changes are recorded with the permission configuration
before and after the action. For bundles, their security policies
may exist in the form of configuration files, and these configura-
tion files are also monitored.

When only parts of the OSGi are concerned, such as a service,
its dependent services set can be obtained via dependency
analysis. The service dependency management can help identify
the dependent services via analyzing the manifest of bundles,
such as the subprojects of Felix: dependency manager (Apache
Felix, 2010). With the dependent services set, the attestation
policy for attestation service is configured accordingly. For a given
security model, these concerned services are monitored, and the

{ service ‘ [service J service
5 I /_:;_Sysiel;::
0SGi framework Policy

|

IVM Attesfation
Service
Security Manager

Attestation

Class Loader Policy

Platform Layer TPM

Fig. 2. Attestation architecture for OSGi systems.

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

L. Gu et al. / Journal of Network and Computer Applications 1 (1i) - 7

attestation policy will provide the specification for them. The
attestation service provides an interface to manage the attesta-
tion policy. With the attestation object list corresponding to the
given security model, the attestation service can set the attesta-
tion policy accordingly.

Security evaluation: The security of the platform layer can be
attested by its authenticated boot records. The security of the
attestation service can be attested by checking the code integrity
of Java Virtual Machine and attestation service module. With
TPM, the monitoring process and measurements can be attested.
After the initial stage, the sandbox mechanism in Java Virtual
Machine protects the execution of Java program, so the trust
chain can be built from TPM to the execution of bundles.

As TPM provides a strong support to record the states and
events in OSGi systems, the shared object attacks (McGraw and
Felten, 1999) can be identified. The root of trust for trust
establishment between clients and OSGi system is based on the
secure chip, TPM. Thus our scheme works even the platform
operator is untrusted. According to the threat model in Section 3,
the runtime records for the objects in the trust chain can be
verified accordingly to attest whether the trust chain is built, and
finally attest the enforced security model of Felix.

Performance evaluation: We implemented the prototype of our
attestation service based on JVMTI (2010), Felix and TrouSerS-
0.3.1. We evaluated the performance of our attestation service by
monitoring the execution of Felix. Our experiment mostly con-
cerns the following activities during the OSGi execution: the
framework initialization and bundle life cycle management. These
activities may result in security configuration changes on the
0OSGi System and they greatly affect the security state of the CBS.
We studied the performance of AS on monitoring these two kinds
of activities. The experiment was carried out on a Lenovo
ThinkCenter M8000t desktop with Intel Core 2 Quad E8400 @
3 GHz and 2G Memory. The host system is Ubuntu with kernel
2.6.28.14.

The Felix initialization is referred to the process for Felix to
boot into its control console, which is comprised of resolving the
system bundle, reloading any cached bundles, and activating the
system bundle. The initialization process involves the whole CBS
and it boots the system into a specific state. Thus the initialization
process is a key activity for the whole CBS, and it should be
monitored and recorded for attestation. The initialization is
implemented as part of method main in class org.apache.felix.-
main. During the initialization, all installed bundles and related
configurations are loaded into the system, causing an overhead on
monitoring the process. As shown in Table 1, we carried out two
groups of experiments on framework initialization: with and

Table 1
The initialization time for Felix (millisecond).

of bundles 10 15 20 25 30

Without AS 220.6 232.2 265.2 300.4 346.2

With AS 474.8 586.8 729.6 868.1 1008.4
Table 2

The performance of transactions with or without the attestation service (ms).

without the attestation service. For each group, the number of
installed bundles in the system varies from 10 to 25. Each number
in Table 1 is the average time of the 20 runs of initialization. As it
involves many loading activities, the cost for monitoring the
initialization is non-negligible. However, as it only runs once for
a typical system, it is acceptable for a long running system in
order to support higher security guarantee.

The bundle management activities may also result in changes
on the CBS security state. We studied the cost of AS for monitoring
bundle installation and update in Felix. The performance results
are shown in Table 2. The cost is mostly caused by invoking TPM
for recording the bundle’s state. The costs for these activities only
hold a small portion in the whole life cycle of bundles. As a result,
it is acceptable for transactions with low frequency on bundle
installation and update in Felix.

5. Related work

Recent studies on remote attestation and security models are
already introduced in Section 2. This section will briefly introduce
the related work of CBS security.

Recent studies on component security (Khan and Han, 2002;
Lindqvist and Jonsson, 1998; Clarke et al., 2003; Sun et al., 2008;
Yan and MacLaverty, 2006) concern mostly twofold: how to build
secure components and secure composite systems from compo-
nents, and how to evaluate component security properties.
Security policy is widely used to support the security of CBS
(Goeminne et al., 2006). Some studies (Pistoia et al., 2007; Sun
et al, 2008) concern the policy validation. For the security
evaluation perspective Muskens and Chaudron (2004) introduce
an integrity measurement mechanism in CBS, however, the
mechanism itself is fragile because of software attacks. Certifying
security of software components (Ghosh and McGraw, 1998)
should run in a trusted domain and it can not solve the problem
of trust establishment between clients and dynamic CBS in
mutual distrust domains. However, security certification can
serve as a technique to support verification. Information flow
control is employed in the component-based framework for
securing embedded systems (Abdellatif et al., 2010). An auto-
nomic trust management solution was introduced for component
based software systems (Yan and Prehofer, 2010).

6. Conclusion

In this paper, we propose a new attestation scheme to support
trust establishment between clients and a dynamic CBS in an
open environment. For a whole dynamic CBS, our scheme is
capable of proving whether its execution is in compliance with
the specified security model. With TPM, our scheme has a strong
root of trust to resist the software attacks. For an individual
component in a dynamic CBS, our scheme attests the execution of
the component by monitoring the execution of the component
and its dependent components. Our scheme is fine-grained and

Bundle Without AS With AS Bundle Without AS With AS
Shell remote Install 20 41 File install Install 26 48
Update 12 35 Update 4 28
Dependence manager Install 33 57 http.api Install 22 45
Update 4 30 Update 4 25
Dependence manager shell Install 29 51 http.proxy Install 22 46
Update 4 27 Update 4 28

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

dx.doi.org/10.1016/j.jnca.2011.03.014

8 L. Gu et al. / Journal of Network and Computer Applications 1 (1ums) na-um

can support flexible attestation on different parts of a dynamic
CBS. We also implemented a prototype of attestation service
based on JVMTI for Felix. The evaluation results show that our
scheme is effective and practical.

Acknowledgements

This work is supported by the National Basic Research Program
of China (973) under Grant No. 2009CB320703 and the Science
Fund for Creative Research Groups of China under Grant No.
60821003.

References

Abdellatif T, Rouis N, Saidane W, Jarboui T. Enforcing the security of component-
based embedded systems with information flow control. In: International
conference on communication in wireless environments and ubiquitous
systems: new challenges (ICWUS), 2010; 2010. p. 1-6.

Alam M, Zhang X, Nauman M, Ali T, Seifert J-P. Model-based behavioral attesta-
tion. In: SACMAT '08: Proceedings of the 13th ACM symposium on access
control models and technologies. New York, NY, USA: ACM; 2008. p. 175-84.

Apache Felix, URL ¢ http://felix.apache.org/site/index.html); 2010.

Baiardi F, Cilea D, Sgandurra D, Ceccarelli F. Measuring semantic integrity for
remote attestation. In: Chen L, Mitchell CJ, Martin A, editors. Proceedings of
the second international conference on trusted computing, trust 2009, Oxford,
UK, April 6-8, 2009, Lecture notes in computer science, vol. 5471. Springer;
2009. p. 81-100.

Bell DE, La Padula JL. Secure computer systems: mathematical foundations.
Technical Report ESD-TR-73-278, MITRE Corporation; 1973.

Biba K]J. Integrity considerations for secure computer systems. MTR-3153, Rev. 1,
The Mitre Corporation; 1977.

Blaze M, Feigenbaum J, Lacy J. Decentralized trust management. In: Proceedings of
the 1996 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press; 1996. p. 164-73.

Boutaba R, Aib I. Policy-based management: a historical perspective.] Network
Syst Manage 2007;15(4):447-80.

Chen L, Landfermann R, Lohr H, Rohe M, Sadeghi A-R, Stiible C. A protocol for
property-based attestation. In: STC '06. New York, NY, USA: ACM Press; 2006.
p. 7-16.

Clark DC, Wilson DR. A comparison of commercial and military security. In:
Proceedings of IEEE symposium on security and privacy, Washington DC;
1987. p. 184-94.

Clarke D, Richmond M, Noble J. Saving the world from bad beans: deployment-
time confinement checking. SIGPLAN Not 2003;38(11):374-87.

Denning DE. A lattice model of information flow. Commun ACM 1976;19(5):
236-43.

Fisler K, Krishnamurthi S, Meyerovich LA, Tschantz MC. Verification and change-
impact analysis of access-control policies. In: 27th International conference on
software engineering (ICSE 2005) 15-21 May 2005, St. Louis Missouri, USA.
ACM; 2005. p. 196-205.

Garfinkel T, Pfaff B, Chow J, Rosenblum M, Boneh D. Terra: a virtual machine-based
platform for trusted computing. In: Proceedings of the 19th ACM symposium
on operating systems principles (SOSP’'03). Bolton Landing, NY, USA: ACM
SIGOPS; 2003. p. 193-206.

Ghosh AK, McGraw G. An approach for certifying security in software components.
In: Proceedings of the 21st NIST-NCSC national information systems security
conference; 1998. p. 42-8.

Goeminne N, Jans GD, Turck FD, Dhoedt B, Gielen F. Service policy enhancements
for the OSGi service platform. In: Proceedings of the 9th international
symposium on component-based software engineering, CBSE 2006, Vdsteras,
Sweden, June 29-July 1, 2006, Lecture notes in computer science, vol. 4063.
Springer; 2006.

Goguen JA, Meseguer]. Security policies and security models. In: Proceedings of
the IEEE symposium on security and privacy; 1982. p. 11-20.

Gu L, Cheng Y, Ding X, Deng RH, Guo Y, Shao W. Remote attestation on function
execution. In: Chen L, Yung M, editors. INTRUST, Lecture notes in computer
scienceSpringer; 2009. p. 60-72.

Gu L, Ding X, Deng RH, Xie B, Mei H. Remote attestation on program execution. In:
Proceedings of the 3rd ACM workshop on scalable trusted computing, STC
2008, with CCS’08, Alexandria, VA, USA, October 31, 2008. ACM; 2008.
p. 11-20.

Gu L, Ding X, Deng RH, Zou Y, Xie B, Shao W, Mei H. Model-driven remote
attestation: attesting remote system from behavioral aspect. In: International
symposium on trusted computing (TrustCom). IEEE Computer Society; 2008.
p. 2347-53.

Haldar V, Chandra D, Franz M. Semantic remote attestation—a virtual machine
directed approach to trusted computing. In: The third virtual machine
research and technology symposium (VM ’04). USENIX; 2004. p. 29-41.

Hnetynka P, Plasil F. Dynamic reconfiguration and access to services in hierarch-
ical component models. In: Gorton I, Heineman GT, Crnkovic I, Schmidt HW,
Stafford JA, Szyperski CA, Wallnau KC, editors. Proceedings of the 9th
International Symposium on component-based software engineering, CBSE
2006, Visteras, Sweden, June 29-July 1, 2006, Lecture notes in computer
science, vol. 4063. Springer; 2006. p. 352-9.

Horwitz S, Reps T. The use of program dependence graphs in software engineering.
In: ICSE '92 Proceedings of the 14th international conference on Software
engineering. New York, NY, USA: ACM Press; 1992. p. 392-411.

Jaeger T, Sailer R, Shankar U. PRIMA: policy-reduced integrity measurement
architecture. In: SACMAT '06. New York, NY, USA: ACM Press; 2006. p. 19-28.

JVMTL Sun microsystems, Inc. JVM Tool Interface (JVMTI), URL (http://java.sun.
com/j2se/1.5.0/docs/guide/jvmti/ »; 2010.

Khan KM, Han]J. Composing security-aware software. I[EEE Software 2002;19(1):
34-41.

Kil C, Sezer EC, Azab AM, Ning P, Zhang X. Remote attestation to dynamic system
properties: towards providing complete system integrity evidence. In: DSN.
IEEE; 20009. p. 115-24.

Kolovski V, Hendler JA, Parsia B. Analyzing web access control policies. In:
Williamson CL, Zurko ME, Patel-Schneider PF, Shenoy PJ, editors. Proceedings
of the 16th international conference on World Wide Web, WWW 2007Banff,
Alberta, Canada: ACM; 2007. p. 677-86. May 8-12, 2007.

Li N, Mitchell JC, Winsborough WH. Design of a role-based trust-management
framework. In: SP '02: Proceedings of the 2002 IEEE symposium on security
and privacy. Washington, DC, USA: IEEE Computer Society; 2002. p. 114-30.

Lindqvist U, Jonsson E. A map of security risks associated with using cots.
Computer 1998;31(6):60-6.

McGraw G, Felten EW. Securing Java: getting down to business with mobile code.
John Wiley and Sons; 1999. pub-WILEY:adr.

Muskens], Chaudron M. Integrity management in component based systems.
EUROMICRO Conference 2004:611-9.

Nauman M, Alam M, Zhang X, Ali T. Remote attestation of attribute updates and
information flows in a UCON system. In: Chen L, Mitchell CJ, Martin A, editors.
Proceedings of the second international conference on trusted computing,
trust 2009, Oxford, UK, April 6-8, 2009, Lecture notes in computer science, vol.
5471. Springer; 2009. p. 63-80.

0OSGi About the OSGi service platform, URL <http://www.osgi.org/documents/
collateral/TechnicalWhitePaper20050sgi-sp-overview.pdf); 2010.

Pistoia M, Fink SJ], Flynn RJ, Yahav E. When role models have flaws: static
validation of enterprise security policies. In: ICSE. IEEE Computer Society;
2007. p. 478-88.

Poritz], Schunter M, Van Herreweghen E, Waidner M. Property attestation—
scalable and privacy-friendly security assessment of peer computers. Techni-
cal Report RZ 3548, IBM Research; May 2004.

Sadeghi A-R, Stble C. Property-based attestation for computing platforms: caring
about properties, not mechanisms. New security paradigms; 2004.

Sailer R, Zhang X, Jaeger T, Doorn Lv. Design and implementation of a tcg-based
integrity measurement architecture. In: Proceedings of the 13th USENIX
security symposium. San Diego, CA, USA; 2004. p. 223-38.

Sandhu RS. Role-based access control. Advances in computers 1998;46:238-87.

Shi E, Perrig A, Doorn LV. Bind: a fine-grained attestation service for secure
distributed systems. In: 2005 IEEE symposium on security and privacy; 2005.
p. 154-68.

Sun L, Huang G, Sun Y, Song H, Mei H. An approach for generation of j2ee access
control configurations from requirements specification. In: The eighth inter-
national conference on quality software; August 2008. p. 87-96.

The OSGi Alliance. OSGi service platform—core specification. Release 4.
URL < http://osgi.org/osgi_technology/download_specs.asp »; August 2005.
Trusted Computing Group. TPM main specification. Main Specification Version

1.2 rev. 85, Trusted Computing Group; February 2005.

Yan Z, Maclaverty R. Autonomic trust management in a component based
software system. In: Yang LT, Jin H, Ma], Ungerer T, editors. Proceedings of
the third international conference on autonomic and trusted computing, ATC
2006, Wuhan, China, September 3-6, 2006, Lecture notes in computer science,
vol. 4158. Springer; 2006. p. 279-92.

Yan Z, Prehofer C. Autonomic trust management for a component based software
system. IEEE Trans Depend Secure Comput 2010;PP(99):1.

Zhang N, Ryan M, Guelev DP. Evaluating access control policies through model
checking. In: Zhou], Lopez], Deng RH, Bao F, editors. Information security,
Lecture notes in computer science, vol. 3650; 2005. p. 446-60.

Network Comput Appl (2011), doi:10.1016/j.jnca.2011.03.014

Please cite this article as: Gu L, et al. Security model oriented attestation on dynamically reconfigurable component-based systems.]

http://felix.apache.org/site/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://osgi.org/osgi_technology/download_specs.asp
dx.doi.org/10.1016/j.jnca.2011.03.014

	Security model oriented attestation on dynamically reconfigurable component-based systems
	Introduction
	Background
	Motivating scenarios
	Trusted computing and remote attestation
	Security model and security policy

	Attestation on dynamically reconfigurable component-based systems
	Scheme overview
	Scheme architecture
	Attestation service

	Security model
	Security model oriented attestation
	Identifying attestation objects
	Identifying attestation objects according to security model
	Identifying attestation objects according to granularity
	Updating attestation object list

	Attestation procedure

	Case study: attestation on OSGi systems
	Related work
	Conclusion
	Acknowledgements
	References

