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Abstract—Many indoor positioning algorithms have been
proposed in the last decade, most of which are based on WiFi RSS
fingerprints. However, the environment has changed dramatically
since the original algorithms using only a few Access Points
(APs). A typical building with densely deployed APs might
contain hundreds of APs. The explosive growth of the number of
APs introduces new challenges to these WiFi-based localization
algorithms. This paper presents an empirical study of WiFi
fingerprint-based indoor localization algorithms in a real-world
environment with hundreds of APs. Our study aims to answer
several important research questions regarding the influence of
the number of APs, time variance and device variance. The study
implements four existing algorithms and also proposes a new
algorithm called LCS that is designed specifically for an AP-
intensive environment. We compare the localization accuracy of
different algorithms with different variances in the experimental
results, which shows that the proposed LCS algorithm is able to
efficiently resist diverse variances in an AP-intensive setup.

I. INTRODUCTION

Location is one of the most important contexts for com-
puting devices, especially mobile devices such as smartphones.
Location information can be used to provide various location-
based services (LBS) [10], including navigation, emergency
rescue, traffic monitoring, etc. With the rapid development of
mobile Internet, getting accurate location information becomes
more and more important.

Global positioning system (GPS) is now widely used
for localization, but it only works outdoors. Hence, many
researchers have studied how to conduct indoor localization
when GPS is unavailable. Many indoor localization techniques
are proposed in the last decade. These techniques depend
on various hardware devices, such as infrared [9], ultrasound
[4], Bluetooth [3], radio-frequency identification (RFID) [11].
Since these techniques require the deployment of specific
devices, it is expensive and difficult to deploy on a large scale.
In comparison, indoor localization using wireless local area
network (WLAN) signals is low-cost and easy to deploy.

Fingerprint-based localization technique [1] is one of the
most common solutions to RSS-based indoor localization. It
is used to improve indoor localization accuracy by collecting
location related data (fingerprint). It takes RSS samples as
fingerprints before positioning. When one positioning request
is received, it matches the current RSS fingerprint with the
samples. The location of the closest sample is regarded as the
location of the current position.

It has been more than a dozen years since the first
fingerprint-based technique was introduced [1]. Many algo-

rithms have been proposed to improve the positioning ac-
curacy. However, the environment has changed dramatically.
Many previous studies are carried out with a few WiFi access
points (APs). Existing studies before 2009 use no more than
26 APs [2], while more recent work observe no more than 100
APs [7], [8].

As a result of the popularization of WLAN, hundreds of
APs may be deployed in a building. During our experiments in
a university office building, 299 APs are detected on a single
floor. The explosion of APs makes this environment more
complex and uncontrollable, which brings several challenges.

• There may exist different types of APs. The number
of APs are much higher because everyone can set
up his/her own AP. The APs can be deployed using
network adapters, PCs or even mobile phones. Since
many of these APs are not public facilities, they are
not promised to be stable. The ones set up by PCs
and smartphones can even move around. It is hard to
use them in localization algorithms if the environment
contains many such APs.

• APs come and APs go. As time passes by, some APs
disappear and new APs may emerge. Some APs might
be temporarily unavailable due to various reasons.
Some may be replaced by new ones. All these cases
lead to the variation of the number of APs. When the
environment is crowded with hundreds of APs, the
variation may become more significant, which might
increase the positioning errors.

• Different devices might increase the difficulty of po-
sitioning algorithms. Different devices may receive
different RSS readings from the same AP, even at the
same position and at the same time. In our experi-
ment, the set of APs each device can detect are also
different. It will be difficult to compare and match
the fingerprints collected by other devices. Recent
researches have attempted to use crowdsourcing [13],
[15], [12] to save the labor of sampling, which will
also introduce device diversity to indoor localization
algorithms.

As many previous algorithms are designed for positioning
in the environment with a few APs, we are curious whether
they can overcome all the challenges in an environment with
hundreds of APs. Our empirical study in this paper implements
five fingerprint-based algorithms and analyzes their perfor-
mance to answer the following research questions:
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Fig. 1. The floor plan of the experiment environment.

TABLE I. SAMPLING CONFIGURATIONS

Sample # Time Devices
1 Reference time Google Nexus S

2 3 days later Google Nexus S

3 20 days later Google Nexus S

4 2 months later Google Nexus S

5 14 months later
Google Nexus S, ZTE N986,
Sumsung Galaxy W I8150

• RQ1: How do different algorithms perform with
densely deployed APs?

• RQ2: How do different algorithms perform as time
goes by?

• RQ3: How do different algorithms perform with dif-
ferent devices?

The existing algorithms we studied include KNN Eu-
clidean, KNN Tanimoto, N-gram and FreeLoc. All of them are
fingerprint-based algorithms. This paper also proposes a simple
algorithm called LCS (Longest Common Subsequence), which
is designed for an AP-intensive environment. We use these five
algorithms to answer the above three research questions by
conducting the experiments and comparing their performances.

II. STUDY DESIGN

A. Experiment Setup

The experiment environment was the corridor of the fourth
floor of an office building in Peking University. The map is
shown in Fig. 1, which is roughly 50 m by 50 m. In each
round of the experiments, we walked along the corridor and
took samples every 4 meters. At each position, we collected
60 fingerprints for training and testing.

The sampling configuration is listed in Table I. In order to
investigate RSS fluctuations as time passes by, we conducted
five rounds of samplings within 14 months. The second to
fourth samplings are, respectively, 3 days, 20 days, 2 months
and 14 months after the initial sampling. Furthermore, we
collected the data from three different smartphones in sampling
#5, which is used for studying the influence of different devices
on positioning accuracy.

B. Algorithms Studied

WiFi fingerprint positioning has been studied for many
years. Although many algorithms have been proposed, only a
few algorithms are commonly employed due to implementation
difficulty and efficiency.

In order to maximize the value of this study, we choose
algorithms based on two principles: (1) easy to implement, (2)
efficient in localization. As a result, we choose four existing
algorithms from the previous studies, which are KNN Eu-
clidean, KNN Tanimoto, N-gram, FreeLoc. The first two KNN
algorithms are the classical classification algorithms using the
absolute signal strength, while the last two algorithms are
based on the assumption that regardless of the RSS variance,
the relative strength sequence is stable. We also propose a
new LCS algorithm, which is designed specifically for the AP-
intensive environment.

1) KNN: The KNN Algorithms [1] calculate the distances
between fingerprints, and classifies the position of the query by
assigning the position that is the most frequent among the K
nearest fingerprints. We use two difference distance metrics in
our experiment: Euclidean distance and Tanimoto coefficient.

• Euclidean distance between fingerprints X and Y:

DE(X,Y ) =

√∑
i

(RSSiX −RSSiY )2

• Tanimoto Coefficient [6] between fingerprints X and
Y:

CT (X,Y ) =
‖RSSX ·RSSY ‖

‖RSSX‖+ ‖RSSY ‖ − ‖RSSX ·RSSY ‖

The larger CT (X,Y ) is, the closer X and Y are.

2) N-gram: The N-gram algorithm [5] is a probabilistic
method frequently used in computational linguistics. It is used
to calculate the likelihood of two BSSID sequences. We sort
the BSSIDs by the corresponding RSSs and calculate the
probability of every Y’s contiguous n-BSSID subsequence in
X.

Dn−gram(X,Y ) =
∏
i

px(Syi)

where px(Syi) is the probability that the Y’s ith subse-
quence px(Syi) appears in X. The distance from fingerprint X
to Y is the product of all px(Syi).

3) FreeLoc: FreeLoc[14] is proposed to solve problems in
crowdsourcing-based systems. It uses only relative relationship
information among RSS values. FreeLoc builds datasets for
each AP. A dataset for an AP contains the APs with lower
RSS than it. The likelihood of Fingerprint X and Y is the
accumulating number of the common subset size of every AP.

As a result, FreeLoc does not depend on the actual RSS
readings, thus making it robust to different devices, as long as
the relative RSS readings keep unchanged on different devices.



4) LCS: Although FreeLoc solves the problem of device
variance, it does not deal with time variances specifically when
the set of APs changes after a period of time.

We propose an algorithm based on the idea of longest
common subsequences (LCS) to deal with the AP changes in an
AP-intensive environment. In order to tolerate the disappeared
APs and newly-emerged APs, we define the similarity between
two signatures X and Y as the length of the longest common
subsequence prof their BSSID sequences ordered by strengths.

Compared to N-gram, the subsequence in LCS is non-
continuous. This is because the RSS fluctuations of different
APs are asynchronous, which may cause two adjacent APs
in the sequence exchange orders. The similarity of two finger-
prints can be determined as the length of their longest common
subsequence.

Compared to FreeLoc, LCS is robust to AP changes
because even a few APs disappear or emerge, it will not affect
the length of their longest common subsequence. We will show
later in the experiments that LCS performs well in a real-world
environment with hundreds of APs.

III. STUDY METHODOLOGY AND RESULTS

We attempt to answer three research questions when ap-
plying existing localization algorithms in an environment with
hundreds of APs. In this section, we investigate each question
by discussing our motivation, approach and results analysis.

A. RQ1: How do different algorithms perform with densely
deployed APs?

Motivation: Previous works have studied various position-
ing algorithms. However, most early studies are conducted in
the environment with a limited number of APs. With the rapid
development of wireless networks, more and more APs are
deployed either in public or in private areas. This change in
the environment raises the following concern: under such con-
ditions, can an algorithm perform as well in an environment
with hundreds of APs as when there were only several APs?
We believe the answer to this question is important, because
it will directly affect the validity of previous algorithms and
the future research directions of indoor localization as well.

Approach: In order to study the performance of different
algorithms with densely deployed APs, we conduct experi-
ments by predicting using sample #2 with sample #1 as the
training data. The results can also serve as the reference per-
formance of each algorithm in the next two research questions.

Based on our observation, almost 300 APs coexist in the
test environment. Some are public APs, and some are deployed
by individuals, which makes this environment more complex
and uncontrollable. This overwhelming number demonstrates
the importance of conducting such kind of experiments.

Results: Fig. 2 shows the localization errors when predict-
ing sample #2 based on sample #1.

The results show that, KNN Tanimoto, LCS and FreeLoc
achieve better performances compared to the other two algo-
rithms. When the tolerance error is 0 meter, KNN Tanimoto
outperforms LCS and FreeLoc about 3 percent, but when
the errors are more than 4 meters, FreeLoc becomes the

 ìð

 ëð

 êð

 éð

 èð

 çð

 ïðð

 ð  ë  ïð  ïë  îð  îë  íð

»®®±®ø³÷

ÕÒÒ Û«½´·¼»¿²
ÕÒÒ Ì¿²·³±¬±

Òó¹®¿³
Ú®»»Ô±½

ÔÝÍ

Fig. 2. Localization errors (CDF) with different algorithms.

TABLE II. AP VARIATION THROUGH TIME COMPARED TO SAMPLE #1.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Total # of
APs

278 280 272 288 299

# of Same
APs

- 251 243 192 175

# of Disap-
peared APs

- 27 35 86 103

# of New
APs

- 29 29 96 124

best algorithm. KNN Euclidean performs the worst, whose
precision is roughly 15% and 5% lower than KNN Tanimoto
with tolerance error at 0 and 4 meters respectively.

We can see that LCS performs as well as the best algo-
rithms in this set of results.

B. RQ2: How do different algorithms perform as time goes
by?

Motivation: As time passes by, many factors will change.
In this experiment, we observe two variations: (1) The signal
strengths of each AP can change significantly. (2) Some APs
may disappear, while new APs will be detected.

Fig. 3 shows the typical RSS distribution of one particular
AP at the same position with the same device as time passes
by. The median of the RSS decreased from -51dBm (sample
#1) to -66dBm (sample #5). Besides some outliers, the RSS
distributions of sample #1 and #5 does not even overlap. The
observed tendencies of RSS variations are very different, which
do not exhibit any general patterns.

Apart from the variance of AP RSSs over time, the APs
that can be detected are not stable either. During the process,
some APs might be damaged or out of function, while some
may be replaced with new ones. There are also some mobile
APs, which are set up with a PC or USB wireless routers. In
our experiment, although the total number of APs does not
change a lot, a significant portion of APs are replaced with
new ones.

Table II presents the variation of APs at different time
points. The APs are detected with the same smartphone
(Google Nexus S) at a different time. We can see that even
after only three days (Sample #2), about 10% of all the APs
have disappeared, while 10% of new APs have emerged. The
number of APs disappeared and emerged has grown gradually
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Fig. 3. RSS distribution of a typical AP at one position over time.

with time. After 14 months, pore than 1/3 of all the APs are
changed, with 103 old APs replaced by 124 new ones.

When the RSSs fluctuate and the detected APs change
and disappear, samples in the databases might be out of
date. Are the localization techniques robust enough to tolerate
such variances? In this research question, we will attempt to
investigate this issue.

Approach: In order to answer this question, we use sample
#1 as the training data to predict the positions in sample #2,
#3, #4 and #5. We will compare the positioning accuracy of
each algorithm when making predictions 3 days, 20 days, 3
months and 14 months after the reference sampling.

Result: Fig. 4 shows the experiment results. It is obvious
that the positioning performance of every algorithm is some-
what affected by time. Overall, the accuracy of most algorithms
becomes worse with time passing by.

Among all the algorithms, N-gram was affected most by
time. The percentage of correct predictions (0m error) goes
down from 56.1% to around 36.1%, while the prediction with
errors less than 4 meters also goes down by more than 12%.

When comparing the two KNN algorithms, KNN Tanimoto
degrades much faster than KNN Euclidean. Although KNN
Tanimoto can correctly predict the positions at 64.6% after
three days, which is much better than the 49.5% of KNN Eu-
clidean. However, their performances in predicting the correct
positions become very close after 14 months (both at 39%).

On the other hand, the performance of FreeLoc remains
stable in a short period of time, for example, after 20 days and
2 months. However, after more than one year, its performance
has shown a significant degradation. The correct predictions
with errors of 0 meter and 4 meters have degraded by 16.3%
and 9.2% respectively.

As we expect, because LCS relies on the longest common
subsequence of APs, it is more time-tolerant. Although the
correct predictions with no errors has also come down as other
algorithms, when the error tolerance expands to 4 meters, it
achieves nearly the same precision as three days later, which
is much better than all four other algorithms. The results show
that LCS is the most robust algorithm with time influence.

C. How do different algorithms perform with different devices?

Motivation: Although many early algorithms are conduct-
ing prediction based on training data collected on the same
device, it becomes inevitable that more and more different
devices will get involved in the localization process. Because
different smartphones may have different WiFi adapter chips, it
causes several problems, which include: (1) The signal strength
readings of different devices might vary significantly. (2) The
number of APs each device can detect might also differ. (3)
The scanning speed of different devices could also be different.

Fig. 5 shows the RSS distributions of a typical AP with
three different devices including Google Nexus S (Device 1),
Samsung I8150 (Device 2) and ZTE N986 (Device 3). The
RSSs are gathered at the same position and the same time. This
guarantees that different devices reside in an environment with
the same wireless signals, but the RSSs they receive turn out
to be very different, not only in signal levels, but also in AP
distributions. At this particular position, N986 receives higher
RSSs on average with smaller variance while the RSSs Nexus
S receives are lower on average with larger variance.

Table III compares the range of APs that different devices
can detect. The data is collected from Sample #5, with the same
three devices as above. The samples are taken at the same place
and the same time, but the APs that can be detected differ
greatly in quantity. Some APs can only be detected by one
device. ZTE N986 observed 295 APs in total, which is close
to the 299 APs detected by Google Nexus S. But 19 APs are
new, and 23 APs can not be detected. One surprising finding
is that the Samsung I8150 only detected 12.73 APs each time
on average, while Nexus S and N986 could detect an average
of 29.4 and 30.25 APs1. Because of the wide variance, the AP
scanning ability may affect the positioning capabilities of each
device.

Although the devices are installed with the same sampling
app and are required to get scan results at the same frequency
(every 0.5s), the executing time of Nexus S was nearly twice
what N986 used. This can also affect localization accuracy and
response speed.

Since the algorithms are based on the same samples in
database, if the sampling device is different from the posi-
tioning one, this could result in big difference in positioning
accuracy. Besides sampling by one device, gaining samples
from different phones can also lead to more serious problems.

Approach: We collected fingerprints from three different
devices in Sample #5. We use sample #1, which is taken by
device 1 (Google Nexus S), as the training data to predict
fingerprints of different smartphones in sample #5 respectively.

Result: Fig. 6 presents the localization errors of an AP at
the same position and the same time with different devices.

Among all five algorithms, KNN with Euclidean appears
to be the most stable one. No matter which device is used, the
prediction accuracy is almost the same. KNN with Tanimoto
suffers most with different devices. To achieve over 80%
precision, the error tolerance increases from 4 meters with
Device 1 and 3 to 8 meters. In comparison, N-gram, FreeLoc

1Although Samsung I8150 and Nexus S are both produced by Samsung, they
use different chipsets, which might explain the big gap in WiFi capabilities.
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(a) KNN Euclidean
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(b) KNN Tanimoto
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(c) N-gram
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(d) FreeLoc
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(e) LCS

Fig. 4. Localization Errors (CDF) as time passed by. (3d = 3 days, 20d = 20 days, 3m = 3 months, 14m = 14 months)
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Fig. 5. RSS distribution with different devices of an AP at one place and
the same time.

and LCS are slightly influenced. LCS and FreeLoc achieve the
positioning precision close to KNN Euclidean with Device 2,
while they perform much better than KNN Euclidean with the
other two devices.

Since the number of APs that Device 2 can detect is much
smaller than Device 1 and 3, the performance with Device
2 is generally worse than the others. although there is a big
difference of RSS and executing time between Device 1 and
3, the positions of Device 3 can be predicted as precisely as
Device 1 in general.

IV. DISCUSSIONS

There are some limitations in our study. First of all, due to
time and equipment restrictions, we conducted the experiments

TABLE III. AP VARIATIONS WITH DIFFERENT DEVICES. (The numbers
shown in column 2-4 are in comparison with the APs in Device 1.)

Device 1 Device 2 Device 3
Total # of APs 299 222 295

# of same APs - 206 276

# of Disappeared APs - 93 23

# of New APs - 16 19

Average # of APs in
each scan

29.4 12.73 30.25

only in one environment. It will be helpful to perform extra
experiments in a different place, such as a supermarket or
shopping mall. However, we believe our study has revealed
some interesting observations as discussed above. We will
investigate it further in the near future.

Another limitation is that the algorithms studied are mostly
basic algorithms in order to test their efficiency due to different
variances. More complicated algorithms will be able to tolerate
all kinds of variances such as phone positions and RSS
variation [7]. However, most of these algorithms have not been
tested in an environment with hundreds of APs.

V. CONCLUSION

This paper presents an empirical study to compare the
performances of different fingerprint-based indoor localization
algorithms. We have shown that in a real-world environment
with hundreds of APs, the performance of localization algo-
rithms could vary significantly due to the number of APs, time
variance and different devices. We have shown the number of
APs could change significantly after a relatively long period
(one year, for example).
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(a) KNN Euclidean
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(b) KNN Tanimoto
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(c) N-gram
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(d) FreeLoc
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(e) LCS

Fig. 6. Localization Errors (CDF) with different devices (Device 1 = Google Nexus S, Device 2 = Samsung I8150, Device 3 = ZTE N986)

We also propose a simple but effective algorithm based
on longest common subsequences (LCS), which could tolerate
the AP changes due to time. Experimental results show that
LCS performs as well as the best existing algorithm in an
AP-intensive environment.
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