SAConf: Semantic Attestation of Software
Configurations*®

Hua Wang, Yao Guo, and Xiangqun Chen

Key Laboratory of High Confidence Software Technologies (Ministry of Education)
Institute of Software, School of EECS, Peking University, Beijing, China
{wanghua04, yaoguo, cherry}@sei.pku.edu.cn

Abstract. Remote attestation is one of the key functionalities provided
by trusted platforms. Most current attestation approaches are based on
cryptographic hash functions, which are appropriate to attest to rela-
tively stable objects such as executables. However, they can not effec-
tively deal with software configurations that could have many (or even
infinite) trusted variants and could also be modified at run-time. This pa-
per proposes SAConf, a novel semantic attestation approach to attesting
to software configurations. SAConf uses a list of constraints to represent
the challenger’s trust policies, and verifies configurations based on seman-
tic checks against the constraints, according to the semantic meanings
of configurations rather than their hashes. An on-request measurement
strategy is also added as a complement to the on-load strategy in order
to capture potential modifications to configurations during execution.
We implemented a prototype of SAConf and evaluations show that it
could reduce the storage overhead from exponential to linear compared
to hash-based approaches.

1 Introduction

In a distributed environment involving multiple platforms, the platforms could
be owned and managed by different entities who might not trust each other.
Platforms could also be compromised and running malicious code. Thus it is
very important that a platform (challenger) is able to verify the software trust
state of another platform (attestor).

Configuration is an important factor affecting software trust. Many programs
can be tuned to behave in very different ways through user-specified configura-
tions. Usually a program is not trusted if its configuration does not comply with
the challenger’s trust policy, even if its executable is launched correctly without
being tampered with. Therefore attesting to configurations should be included
in software attestation as well.

* This research is supported by the National High Technology 863 Program of China
under Grant No. 2007TAA01Z462 and 2008AA017Z133, the National Basic Research
Program of China (973) under Grant No. 2009CB320703, and the Science Fund for
Creative Research Groups of China under Grant No. 60821003.

J. Gonzélez Nieto et al. (Eds.): ATC 2009, LNCS 5586, pp. 1207, 2009.
© Springer-Verlag Berlin Heidelberg 2009



SAConf: Semantic Attestation of Software Configurations 121

The Trusted Computing Group (TCG) has developed a bottom-up measuring
model and a hardware-based integrity-proving mechanism [2I], based on which
some attestation approaches have been proposed, such as TPod [8] and IMA [I4].
These approaches are believed to be capable of reporting trust states more re-
liably than pure software approaches. Existing TCG-style approaches do not
distinguish between executables and configurations. Both are proved using cryp-
tographic hash functions and with the on-load measure strategy. That is, the
attestor measures executables and configurations by computing their hashes at
load time, and reports their hashes to the challenger during attestation. The chal-
lenger verifies these hashes by comparing them with pre-stored, trusted hashes.

Although TCG-style approaches may be suitable for executables, they do not
work well for configurations due to the following two reasons. 1) When dealing
with configurations, the hash space could explode very easily. Unlike executables
that do not have many trusted variants, the number of trusted configurations
could be extremely large or even infinite, for example, when considering a con-
figuration entry that accepts a float number within a given range. Since with
TCG-style approaches each configuration is denoted by a unique hash, it is some-
times impractical or impossible to deal with all trusted hashes, such as storing
all of them. 2) The on-load measurement strategy can not always reflect the lat-
est configuration. While executables usually do not change after being loaded,
configurations of programs, such as Firefox, could be modified on the fly. In such
cases the measurement performed at load time can not accurately indicate the
trust state.

Some approaches have been proposed to mitigate the problem of hash explo-
sion. Virtual machine (VM) based approaches such as Terra [3] separate trusted
VMs and normal VMs, and only verify the hashes of programs running in the
trusted VMs. Property-based attestation [12], [TT, [I] introduces a trusted third
party to examine the attestor’s hashes and returns its properties rather than
hashes to the challenger. PRIMA [5] only attests to programs having informa-
tion flow to trusted objects. These approaches, however, are still based on hash
functions and focused mainly on executables.

The main limitation of hash-based approaches is that they do not take the
internal structural information of configurations into account because this infor-
mation can not be carried by hash values. Hence semantic checks such as range
comparison and pattern matching can not be performed, thus the trust policy
can only be represented by enumerating all trusted hashes.

To address this problem, we propose a new attestation approach, called Se-
mantic Attestation of Configuration (SAConf), which represents the challenger’s
trust policy in a semantic way (i.e. using a group of constraints), and verifies
configurations against these constraints according to the internal contents of
configurations rather than their hashes. The verification is based on semantic
checks, so the challenger could use a small list of constraints to match a large
number of configurations. To protect the attestor’s privacy, the configuration is
not sent to the challenger. Instead, the challenger sends its trust policy to the
attestor, and the attestor is responsible for verifying whether its configuration



122 H. Wang, Y. Guo, and X. Chen

complies the policy and reporting the result. To assure the challenger of the
genuineness of the attestation result, the attestor also proves that the measuring
and verifying code is executed correctly.

We add an on-request measurement strategy to SAConf as a complement
to the on-load strategy. With this strategy the attestor performs configuration
measurement each time when receiving an attestation request from the chal-
lenger, so that the measurement result always reflects the current state at the
moment when the request is processed. We implemented a prototype of SAConf
to demonstrate its feasibility, in which we develop an example trust policy repre-
sentation scheme for entry-based configurations, reducing the storage cost from
exponential to linear. The time cost may increase with the on-request strategy,
but experiment results show it is trivial.

The rest of this paper is organized as follows. Section 2 describes the design of
SAConf. Section 3 describes the implementation and evaluation of the prototype.
Section 4 discusses several additional advantages of SAConf. The related work
is discussed in section 5. Finally we draw a conclusion and present our future
work in section 6.

2 Semantic Attestation

TCG-style attestation approaches are based on cryptographic hash functions,
requiring the challenger to store one hash for each trusted file. For executables,
this method works well, since the number of trusted variants of an executable
is not very big, usually including the original version and a number of patched
versions. However, the number of trusted configurations could be extremely large,
sometimes even infinite. For example, in terms of entry-based configurations
consisting of <entry, value> pairs, a challenger may accept more than one value
as trusted for some configuration entries. The values of these entries could be
combined to produce a tremendous amount of trusted configurations. Worse still,
some entries may even have unlimited choices. For example, it is not odd that
the challenger does not care about the name of the user who runs Apache’s httpd,
as long as its privileges are properly set. In this case the User entry of httpd’s
configuration could be assigned arbitrary names, leading to actually countless
trusted configurations. Consequently, it is often impractical or even impossible
for the challenger to store hashes of all trusted configurations.

To attest to configurations which have internal structures and can be parsed
according to their syntax, a better way is to read their contents and perform
semantic checks on them to determine whether they comply with the trust pol-
icy. A trust policy usually consists of a group of constraints, such as “the server
at least supports hmac-shal algorithm”, which must be satisfied by trusted con-
figurations. We can represent the constraints in a formal way, so that semantic
checks can be done automatically.

Semantic checks require SAConf to understand syntax of configurations. Hence
some operations definitely depend on the configuration syntax of programs to
be attested, including representing the challenger’s trust policy, and measuring



SAConf: Semantic Attestation of Software Configurations 123

and checking the configuration. Configurations of different programs could be in
very diverse forms, such as entry-based, rule-based and command-based configu-
rations. It is hard to develop a common solution for all programs. Alternatively,
we develop a flexible framework in which syntax-dependent operations are encap-
sulated in customizable and replaceable components.

Semantic checks also require that the party who performs the checks knows
both the configuration and the trust policy. There are several candidates. A
straightforward method is that the attestor sends the entire configuration to
the challenger, which in turn checks the configuration against its policy. This
approach, however, exposes the attestor’s privacy to the challenger. A more
sophisticated method is that both the configuration and the trust policy are sent
to a reliable third party, which performs the check on behalf of the challenger.
But this method requires the presence of an extra third party that is not always
available. The method adopted by SAConf is that the challenger sends its policy
to the attestor and the latter is responsible for performing the check. This method
eliminates the above two deficiencies.

Because the configuration measurement and checks are all done in the attestor
side, the attestor should provide necessary proof to convince the challenger of
the genuineness of the attestation result. The facts to be proved include that the
components of SAConf are not compromised and the trust policy and attestation
result are not tampered with. To do so SAConf provides the attestor with a
proving mechanism built on TCG’s technology.

3 Design of SAConf

This section describes the design of SAConf, including the framework and the
attestation process, as well as the mechanism for proving the genuineness of
attestation results.

3.1 Framework of SAConf

The framework of SAConf is depicted in Figure[ll where syntax-dependent com-
ponents are denoted by grey boxes, while syntax-independent components are
denoted by white boxes.

The challenger needs to store its trust policy and send it to the attestor during
attestation. Hence SAConf should provide the challenger with schemes to repre-
sent its policies. It is impractical to design a common scheme for all programs, but
we could improve the flexibility of schemes so that they can be shared by a group
of programs with similar configuration syntax. In next section we will present an
example scheme which can be used for most entry-based configurations.

The Attestation Server (AttServ) runs as a daemon in the attestor. It is
responsible for handling the interaction with the challenger and coordinating
the activities of other components within the attestor.

The Measurement Engine (MEngine) is responsible for measuring configura-
tions. Programs with distinct configuration syntax usually require customized



124 H. Wang, Y. Guo, and X. Chen

Other
Checker Sources
A
3. CheckCfg Measure
J> 1. Request - 2. GetConfig
‘ AttServ .| MEngine
5. Result and Proof StartME
Challenger User
Kernel
—AttKM
4. GetSig !
TPM Attestor

Fig. 1. SACon Framework

MEngines. The relationship between programs and MEngines is registered in a
dedicated file.

The Checker performs semantic checks, examining whether the configuration
measured by the MEngine satisfies the trust policy received from the challenger.
The checking method depends on the policy representation scheme.

The Attestation Kernel Module (AttKM) is a kernel module used to invoke
TPM to generate signatures to prove the genuineness of the attestation result. It
also monitors execution of programs and notifies the AttServ of this information.

3.2 Attestation Process

The configuration attestation is accomplished through the collaboration of the
components. The numbers in Figure [Tl stand for the temporal order.

In terms of configuration measurement, most existing attestation approaches
use the on-load strategy, i.e. measuring the configuration when it is loaded. We
propose adding n on-request strategy, i.e. measuring the configuration when an
attestation request is processed. SAConf supports both strategies. The former
is suitable for programs whose configurations do not change on the fly, such
as sshd and httpd; while, for programs whose configurations may be modified
dynamically, e.g. Firefox, the latter is desired. Which strategy is used can be
configured for each program.

Measurement is performed by MEngines launched by the AttServ. If a pro-
gram is configured to use the on-load strategy, its MEngine is launched when
the program is executed. Monitoring execution of programs is done by the At-
tKM, which hooks the kernel function used to execute programs, e.g. do execve
in Linux, and signals the AttServ if execution is detected. If the on-request strat-
egy is used, the MEngine is launched after the AttServ receives a request from
the challenger. In both cases the AttServ calculates the hashes of MEngines
when launching them, in order to prove their integrity.

If the on-load strategy is used, the measurement result, as well as the hash
of the MEngine, needs to be stored and used for attestation requests arriving



SAConf: Semantic Attestation of Software Configurations 125

later. We use a dedicated Platform Configuration Register (PCR) [2] to protect
both of them. While, with the on-request strategy, the result and the hash are
consumed immediately after measurement and only for the current request, so
it is not necessary to store them.

The attestation process varies slightly when using different strategies. The
detail of each step is described as follows.

1. The attestation begins with the challenger sending a request to the AttServ,
which contains the identity of the program to be attested and the trust policy
for it, as well as some assistant data such as nonce, a random number used
to defend against replay attacks.

2. Upon receipt of the request, the AttServ retrieves the program’s identity and
finds out which measurement strategy is configured for the program. If the
on-load strategy is used, the AttServ fetches the configuration measured at
load time, as well as the hash of the MEngine, and examines their integrity
according to the PCR. Otherwise the AttServ looks up the MEngine regis-
tered for the program, and launches it to measure the current configuration,
with the hash of the MEngine being computed.

3. The AttServ then launches a proper Checker, passing the trust policy and the
configuration to it. The Checker examines whether the policy is satisfied by
the configuration based on semantic checks. Like the MEngine, the Checker’s
hash is also calculated, used to prove its integrity.

4. The AttServ requests the TPM to generate a signature through the system
call provided by the AttKM, used as the evidence of the genuineness of the
attestation result. The computation of the signature involves the attestation
result, the trust policy, and the hashes of SAConf’s components.

5. The result, the hashes and the signature are sent back to the challenger. The
challenger first verifies the integrity of the trust policy, the result and the
hashes according to the signature. Then it verifies according to the hashes
whether the SAConf’s components are valid and launched correctly. If so,
the challenger is assured that the result denotes the actual trust state of the
program’s configuration.

The attested program does not participate in the attestation process. There is
also no synchronization requirement between the components of SAConf and the
program. So applying SAConf does not need to modify existing programs.

3.3 Proving the Genuineness of Attestation Results

SAConf provides the attestor with a proving mechanism to vouch for the genuine-
ness of the attestation result. This mechanism is built upon TCG’s technology,
based on the assumption that a traditional TCG-style attestation approach, such
as [8, @, [14], has been implemented in the attestor side.

TCG-style attestation approaches measure all loaded programs and modules,
and the measurement results are categorized and stored in separate sequences,
such as the sequences for the kernel and for applications, with corresponding



126 H. Wang, Y. Guo, and X. Chen

PCRs being extended. These sequences, as well as PCRs, are sent to the chal-
lenger during attestation. The challenger verifies the integrity of these sequences
by calculating their hashes and comparing them with corresponding PCRs.

We use the traditional approach to prove low-level software from BIOS up to
the kernel, including the AttKM. But the rest of SAConf’s components, which
are user-mode programs, are not proved by the traditional approach, due to the
following two reasons. 1) MEngines and Checkers should be not only legal but
also proper. Here the term “legal” denotes that a program has been certified by
a trusted third party, while “proper” denotes that a program works correctly
in a certain situation. A legal program may be not proper if used in a wrong
place. For example, the MEngines for sshd and httpd are all legal, but using
the former to measure httpd is obviously not proper. Traditional approaches can
not detect the improper use of legal programs. 2) When verifying configurations,
the challenger usually only concerns SAConf’s components. But with traditional
approaches, the challenger has to process the whole sequence containing the
hashes of all loaded applications. The cost of this operation is high, especially
when the system has been running for a long period and a lot of loads have
occurred.

We propose a customized, more lightweight mechanism to prove the user-
mode components. For the AttKM has been proved by the traditional approach,
we use it to prove the AttServ, which in turn is used to prove Checkers and
MEngines. The AttServ measures Checkers and MEngines when launching them.
The AttServ itself is measured by the AttKM when it invokes the system call
provided by the AttKM to generate signatures. The measurement results, i.e.
hashes, are sent back to the challenger along with the attestation result, so the
challenger can tell which MEngine and Checker are used.

The AttKM invokes the TPM to generate a signature to prove the hashes of
SAConf’s components. Because only the kernel is allowed to access the TPM,
this signature can not be forged by malicious applications. Besides, in order to
prove the integrity of the trust policy and the attestation result, their hashes are
also included in the computation of the signature.

Finally, what the challenger receives from the attestor is

< result, hs, sig >

where hs and sig are the proof. hs is the hashes of the Checker, the MEngine
and the AttServ. sig is the signature generated by the TPM whose value is

sig = Sk (H (result), H(tp), H(hs), nonce)

where S() and K are the signing function and key used by the TPM; H() is a
hash function such as SHAT1; ¢p is the challenger’s trust policy; and nonce is a
random number generated by the challenger to prevent replay attacks.

When receiving the package, the challenger retrieves the attestation result, hs
and sig. It also knows tp, nonce and the public part of K. Then it verifies the
genuineness and freshness of the package by examining the signature and nonce,



SAConf: Semantic Attestation of Software Configurations 127

followed by verifying the hashes of SAConf’s components. If all verification is
passed, the challenger believes that the attestation result reflects the actual trust
state of the program’s configuration.

4 Implementation

We implemented a prototype of SAConf in a Dell OptiPlex 620 equipped with a
TPM chip, running Linux 2.6.20. This section describes its implementation and
evaluation.

4.1 Representation Scheme for Entry-Based Configurations

Although developing a thoroughly common trust policy representation scheme
for all programs is infeasible, we could develop flexible schemes that can be used
for a large number of programs. The entry-based configuration is one of the
most widely used configuration forms. We develop an example scheme that can
be used for most of this kind of configurations.

For entry-based configurations, a challenger’s trust policy are typically some
logical conditions each of which must be satisfied by the values of configura-
tion entries. For example, a challenger requires the value of an entry must be
greater than a constant. Straightforwardly, we use a set of boolean expressions
to represent these conditions. Each expression involves one or several configura-
tion entries. If their values make the expression true, the expression is said to
be satisfied. If all expressions are satisfied, the configuration of the program is
considered to be compliant with the challenger’s policy.

The boolean expression is somewhat similar to that of high-level languages.
Most of often-used operators are supported in our scheme. For entries with nu-
meric values, all arithmetic, relational and logical operators are supported. For
entries with string values, “==" and “!=" are supported, as well as some fre-
quently used string functions such as stremp, strlen and strstr. Entry values are
referred to by the $() operator. $(entryid) will be replaced by the value of the
entry specified by entryid when the expression is evaluated.

In addition, we add two extensions to enhance the representation capability
of our scheme. The first extension is to support set operators. In some cases
it is convenient for the challenger to treat some entries (e.g. lists) as sets. For
example, the challenger may require that its ID is in the trusted ID list. This
can be represented by a belong operator easily. Supported set operators are
listed in Table [l Two special sets are defined. The empty set is denoted by &
and the universe is denoted by ¥. The second extension is to support regular
expressions. Regular expressions can be used to specify entry IDs in the $()
operator, or describe patterns that the values of trusted entries must match.

An example trust policy for sshd represented by our scheme is shown in
Figure Pl Its meaning is straightforward.

Our scheme enables semantic checks such as range comparison and regular
expression, which are not supported by hash based approaches. With this scheme



128 H. Wang, Y. Guo, and X. Chen

Table 1. Supported Set Operators

Operator Syntax Description
set set(d,L) This operator is used to convert a list to a set. L is the string that
denotes the list, and d is the delimiter that separates elements
in the string.
== S1 == 82 If S; contains the same elements as Sz, return true; otherwise
return false.
1= S1 1= 55 Return the reverse result of "==".
belong e belong S If element e belongs to S, return true; otherwise return false.
incl Sy incl Sz This is the inclusion operator. If S; includes Sa, return true;
otherwise return false.
union S7 union S3 This operator returns the union of S; and Ss.
inters S inters S2 This operator returns the intersection of S; and Ss.
diff  Sp diff S2 This operator returns the difference of S; and Sa.

[sshd, f8e3elcd58fdb8434497c0c9ca783bc3cf6a38b3]
// The supported protocol version must be included in set {1,2}
#1 set(,,"”1,2") incl set(,,$(Protocol))

// root is not allowed to log in through ssh
#2 ! ("root"” belong set( ,$(AllowUsers))) || ("root"” belong set( ,$(DenyUsers))) \
Il ($(PermitRootLogin) == "no")

// The intersection of AllowUsers and DenyUsers should be a empty set
#3 (set( ,$(AllowUsers)) inters set( ,$(DenyUsers))) ==

// the cvs group is allowed to log in
#4 "cvs" belong set( ,$(AllowGroup))

// expressions for password authentication
#5 $ (PasswordAuthentication) == "yes"

#6 $ (PermitEmptyPasswords) == "no"”

#7 $(UsePAM) == "yes"

#8 $ (MaxAuthTries) <= 6

#9 $(MaxStartups) > 5 && $ < 10

Fig. 2. An Example Trust Policy for sshd

the challenger can use a group of boolean expressions to match a large number
of configurations, so its storage overhead decreases significantly.

4.2 Evaluation

In this subsection we will evaluate the storage and time cost of SAConf
respectively.

Storage Cost. Our trust policy representation scheme reduces the storage com-
plexity for the challenger from exponential to linear.

With hash-based approaches the challenger needs to store one hash for each
trusted configuration. The number of trusted configurations can be computed
approximately as follows. Suppose there are n entries in the configuration and



SAConf: Semantic Attestation of Software Configurations 129

Table 2. Time Cost

Measuring Checking Reporting Responding
SAConf(On-request)  544pus 9us  932751us  933304us
SAConf(On-load) 24166ps  135us  931773us  931908us
IMA 23394 us - 927168us  927168us

the number of trusted values for the ith entry is ¢;. Then the number of trusted
n

configurations is [] ¢;. So the storage cost grows ezponentially with the number
i=1

of entries having multiple trusted values. Here we do not take factors such as

comments and the order of entries into account, otherwise the cost will be infinite.

While with our scheme, the challenger only needs to store some boolean ex-

pressions. So the storage cost grows linearly with the number of the constraints,

which is usually less than the number of entries.

Time Cost. We measured the time cost of SAConf and compared it with that of
IMA. The result is shown in Table[2l The operations done in the attestor side can
be divided into three stages: measuring the configuration, checking the configura-
tion, and reporting the result. Their cost is listed in corresponding columns.

Each stage is comprised of several operations, some of which are accomplished
by invoking TPM commands. Because of the limited computational ability of
TPM, the time spent by these commands accounts for the majority of the cost.

When using the on-load measurement strategy, the measurement is only per-
formed at load time, but SAConf needs to extend PCRs for each measurement,
which is similar to IMA, making its measurement cost close to that of IMA.
When using the on-request strategy, the measurement is only used for the cur-
rent attestation request. SAConf does not need to store the result and extend
PCRs to protect it, so the cost is much lower.

The checking stage is only necessary for SAConf. With the on-load strategy,
after retrieving the previously measured and stored result, SAConf still needs
to get the specific PCR and verify the result accordingly; while this operation
is not necessary when using the on-request strategy. Therefore the cost of the
latter is much lower than that of the former.

With respect to the reporting stage, the cost of SAConf and IMA is close. In the
reporting stage, SAConf needs to invoke the TPM to generate a signature as evi-
dence, while IMA needs to get a signed PCR from the TPM. Both need the signing
operation of the TPM, which contributes to more than 99% of the cost of this stage.

The last column shows the responding time, namely the time from an attes-
tation request being received to the final result for the request being returned.
For SAConf with the on-request strategy, the responding time includes the time
spent in all stages; for SAConf with the on-load strategy, it includes the check-
ing and reporting stages; while for IMA, it only contains the reporting stages.
But from the result we can see that there is no big difference between their
responding time.



130 H. Wang, Y. Guo, and X. Chen

Consequently, although some operations of SAConf, such as measuring for
each attestation request, parsing configuration files and checking semantically,
may cause extra time cost, it has little compact on the total performance because
the majority of time overhead is spent by the TPM.

5 Related Work

Establishing trust among platforms is an important requirement in distributed
environment. This is usually done by the attestation technologies. There have
already been a lot of attestation approaches proposed.

Some approaches are based on secure hardware. TCG has developed TPM [20],
a secure chip that has been shipped with many platforms. Based on TPM TCG
proposed a hash-based integrity-proving mechanism [2I]. The hashes of files,
including executables and configuration files, are computed at the load time,
and reported to the remote platform later as the trust evidence.

TCG’s proving mechanism has been widely adopted. TPod [§] implements
extensions to the grub bootloader to measure the sequence of code loads that
bring up the operating system, and it stores these measurements in the TPM
to protect them from tampering by software. The TPM can create signed mes-
sages that enable a remote party to verify the code loads measured by TPod.
IMA [I4] steps further by extending integrity measurement and verification up
to the application level. Sailer et al. limit clients’ access to the corporate network
according to their integrity property [13].

Some researches attempt to make improvements to TCG’s mechanism.
Property-based attestation [12,[11] 1] concerns with the platform’s property, such
as security level, rather than the hashes of loaded files. A trusted third party is
introduced to map hashes to platform’s properties. Through the property-based
attestation, [T1] intends to protect the attestor’s privacy. Instead, in SACon we
use the privacy policy mechanism to do so.

Semantic remote attestation [4] attempts to attest to the program’s behavior,
rather than the integrity of its executable and configuration file. The approach is
based on language-based trusted virtual machines (VM). It utilizes the high-level
semantic information contained in the portable code to deduce the program’s
behavior. Although we all use the word ”"semantic”, it has different meanings.
In semantic remote attestation it means the information in executables, while in
SACon it denotes the information in configuration files.

Attesting to executables will also encounter the problem of multiple versions,
though this problem is not so serious as that of configuration files. Some re-
searches have identified and tried to solve this problem. Terra [3] uses a VM
based approach, which provides trusted VMs and normal VMs simultaneously,
running high security-level and low-security level applications separately. The
challenger only needs to verify the software stack in trusted VMs, so the hashes
that the challenger needs to store are reduced. PRIMA [5] extends the IMA
by coupling IMA to SELinux policy [7]. The number of measurement targets
is reduced to those that have information flows to trusted objects. BIND [19]



SAConf: Semantic Attestation of Software Configurations 131

allows programmers to mark out the critical code region through an attestation
annotation mechanism. Only the hashes of the critical regions are computed and
reported. These regions are more stable than other code and data regions. How-
ever, all these approaches focus on the attestation of executables. None of them
can solve the problem of configurations effectively.

The attestation result can only prove the transient trust state, but not per-
sistent state. BIND [I9] attempts to prolong the trust state by moving attested
code into a sand-boxing to protect its execution. However BIND only concerns
with code, but not configurations. SACon mitigates this problem by providing
the challenger with the capability of requesting the attestation at any moment.
The challenger can send requests periodically or at random time.

In addition to hardware based approaches, there have also been some pure
software approaches proposed. Genuinity [6] explores the problem of detecting
the difference between a simulator-based computer and an actual computer.
Genuinity relies on the premise that the program execution based on simulator
is bound to be slower than that based on the actual computer. The execution
time of a specific function that computes the checksum of memory is used as
the evidence to make the attestation. However, Shankar et al. shows that side
effects are not enough to make the attestation [I§]. Pioneer [I5] also relies on the
execution time to perform the attestation. A deliberately designed verification
function and a challenger-response protocol are used to establish the dynamic
root of trust, which can ensure the succeeding code execution. TEAS [2] sends
a randomly selected code segment, rather than a fixed function, to the remote
platform, and determines the genuineness of the remote platform according to
the returned result and the consumed time.

SWATT [16] is a technique proposed to perform attestation on embedded
device with simple CPU architecture. It uses a well-constructed verification
function so that any attempt to tamper with it will increase the running time.
There are still some other attestation approaches proposed for embedded sys-
tems [L0, 17, 22].

6 Conclusion and Future Work

Trust attestation of a software system must take its configuration into account.
Existing attestation approaches can not attest to the software configuration ef-
fectively because of high storage overhead and inability to prove the latest states
of configurations that can be modified dynamically.

In this paper we propose SAConf, a semantic attestation approach, to over-
come these problems. The key contribution of SAConf is that it integrates se-
mantic checks with TCG’s hardware-based proving mechanism. The genuineness
of the checks is proved by a TPM-based mechanism. The challenger’s trust poli-
cies are also represented semantically, reducing the space complexity from ex-
ponential to linear. Besides, we introduce an on-request measurement strategy,
which can accurately reflect the trust state at the moment when the request is
processed.



132

H. Wang, Y. Guo, and X. Chen

We demonstrate the feasibility of SAConf by implementing a prototype. Ex-
periments show that SAConf could reduce the storage overhead significantly
compared to state-of-the-art approaches, only with a very little time cost in-
crease.

Currently we have developed a trust policy representation scheme for entry-
based configurations. Schemes for other configuration forms, such as rule-based
and command-based configurations, still need to be developed, and could be
very different from this one. In future we will study these configuration forms
and develop proper schemes for them.

References

[1]

2]

[4]

[5]

[7]

8]

[9]

[10]

[11]

[12]

Chen, L., Landfermann, R., Lohr, H., Rohe, M., Sadeghi, A.-R., Stable, C.: A
Protocol for Property-Based Attestation. In: The 1st ACM Workshop on Scalable
Trusted Computing, Alexandria, Virginia, USA, pp. 7-16. ACM, New York (2006)
Garay, J.A., Huelsbergen, L.: Software Integrity Protection Using Timed Exe-
cutable Agents. In: The 2006 ACM Symposium on Information, Computer and
Communications Security, Taipei, Taiwan, pp. 189-200 (2006)

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-Based Platform for Trusted Computing. In: The 19th Symposium on Op-
erating System Principles, Bolton Landing, New York, USA, pp. 193-206 (2003)
Haldar, V., Chandra, D., Franz, M.: Semantic Remote Attestation - A Virtual
Machine Directed Approach to Trusted Computing. In: The Third Usenix Virtual
Machine Research and Technology Symposium, San Jose, CA, USA, pp. 29-41
(2004)

Jaeger, T., Sailer, R., Shankar, U.: PRIMA: Policy-Reduced Integrity Measure-
ment Architecture. In: The 11th ACM Symposium on Access Control Models and
Technologies, Lake Tahoe, California, USA, pp. 19-28. ACM Press, New York
(2006)

Kennell, R., Jamieson, L.H.: Establishing the Genuinity of Remote Computer
Systems. In: The 12th USENIX Security Symposium, Washington, DC, USA, pp.
295-308 (2003)

Loscocco, P., Smalley, S.: Integrating Flexible Support for Security Policies into
the Linux Operating System. In: FREENIX Track: 2001 USENIX Annual Tech-
nical Conference, Boston, Massachusetts, USA, pp. 29-42 (2001)

Maruyama, H., Seliger, F., Nagaratnam, N., Ebringer, T., Munetoh, S., Yoshi-
hama, S., Nakamura, T.: Trusted Platform on Demand. Technical Report RT0564,
IBM (February 2004)

Microsoft. Secure Startup - Full Volume Encryption: Technical Overview (April
2005)

Park, T., Shin, K.G.: Soft Tamper-Proofing via Program Integrity Verification in
Wireless Sensor Networks. IEEE Transactions on Mobile Computing 4(3), 297—
309 (2005)

Poritz, J., Schunter, M., Van Herreweghen, E., Waidner, M.: Property Attestation
- Scalable and Privacy-friendly Security Assessment of Peer Computers. Technical
Report RZ 3548, IBM Zurich Research Laboratory (October 2004)

Sadeghi, A.-R., Stuble, C.: Property-based Attestation For Computing Platforms:
Caring about Properties, Not Mechanisms. In: The 2004 workshop on New Secu-
rity Paradigms, Nova Scotia, Canada, pp. 67-77 (2004)



[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

21]
[22]

SAConf: Semantic Attestation of Software Configurations 133

Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based Policy En-
forcement for Remote Access. In: The 11th ACM Conference on Computer and
Communications Security, Washington, DC, USA, pp. 308-317. ACM Press, New
York (2004)

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of
a TCG-based Integrity Measurement Architecture. In: 13th USENIX Security
Symposium, San Diego, California, pp. 223-238 (2004)

Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy
Systems. In: Advances in Information Security, vol. 27, pp. 253-289. Springer, US
(2005)

Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.. SWATT: SoftWare-based
ATTestation for Embedded Devices. In: The 2004 Symposium on Security and
Privacy, pp. 272-282 (2004)

Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote Software-Based Attes-
tation for Wireless Sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS
2005. LNCS, vol. 3813, pp. 27-41. Springer, Heidelberg (2005)

Shankar, U., Chew, M., Tygar, J.D.: Side Effects Are Not Sufficient to Authenti-
cate Software. In: The 13th USENIX Security Symposium, pp. 89-102 (2004)
Shi, E., Perrig, A., Van Doorn, L.: BIND: A Fine-grained Attestation Service for
Secure Distributed Systems. In: IEEE Symposium on Security and Privacy, pp.
154-168 (2005)

TCG. TPM Main Part 1 Design Principles (March 2006)

TCG. TCG Specification Architecture Overview (August 2007)

Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed Software-based Attestation
for Node Compromise Detection in Sensor Networks. In: The 26th IEEE Interna-
tional Symposium on Reliable Distributed Systems, pp. 219-228. IEEE Computer
Society, Los Alamitos (2007)



	SAConf: Semantic Attestation of Software Configurations
	Introduction
	Semantic Attestation
	Design of SAConf
	Framework of SAConf
	Attestation Process
	Proving the Genuineness of Attestation Results

	Implementation
	Representation Scheme for Entry-Based Configurations
	Evaluation

	Related Work
	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




