22nd International Conference on Advanced Information Networking and Applications

Keep Passwords Away from Memory:
Password Caching and Verification Using TPM *

Hua Wang, Yao Guo, Xia Zhao, Xiangqun Chen
Key Laboratory of High Confidence Software Technologies (Ministry of Education),
Institute of Software, School of EECS, Peking University
{wanghua04, yaoguo, zhaoxia, cherry } @cs.pku.edu.cn

Abstract

TPM is able to provide strong secure storage for sensi-
tive data such as passwords. Although several commercial
password managers have used TPM to cache passwords,
they are not capable of protecting passwords during veri-
fication. This paper proposes a new TPM-based password
caching and verification method called PwdCaVe. In ad-
dition to using TPM in password caching, PwdCaVe also
uses TPM during password verification. In PwdCaVe, all
password-related computations are performed in the TPM.
PwdCaVe guarantees that once a password is cached in the
TPM, it will be protected by the TPM through the rest of
its lifetime, thus eliminating the possibility that passwords
might be attacked in memory. A prototype of PwdCaVe is
implemented on Linux to demonstrate its feasibility.

1 Introduction

The security of passwords is extremely important in
many network applications, such as online banking and
email systems. Traditional password managers, such as
Gnome-Keyring [10] and Mac OS Keychain [21], protect
passwords by encrypting them when they are cached. How-
ever, the keys used to encrypt/decrypt the passwords are
kept in memory or disk, and consequently are vulnerable
to attacks.

Some commercial password managers, such as Wave’s
EMBASSY [22] and IBM’s Client Security Solution [2],
have used the Trusted Platform Module (TPM) [20] hard-
ware to enhance their security. In these managers, pass-
words and the keys used to encrypt/decrypt them are both
stored in the protected storage of the TPM and thus are pro-
tected by the TPM. Although these password managers are
more secure than pure-software solutions, there are still po-

*This research is supported by the National High Technology Develop-
ment 863 Program of China under Grant No. 2007AA01Z462.

1550-445X/08 $25.00 © 2008 IEEE

DOI 10.1109/AINA.2008.109

755

tential risks. For example, each time during password verifi-
cation, the password manager needs to deliver the password
to the application (usually in plain-text form) because the
password is required by the application to generate verifi-
cation messages. During this process, the password is de-
crypted and appears in the memory without the protection
of the TPM, thus exposing the password to possible attacks
such as memory viewer [9] and event interception [23].

Obviously, keeping the time that passwords stay in the
memory as short as possible is an effective way to lower
the risk of passwords being stolen. The goal of this paper
is attempting to remove the requirement to deliver plain-
text passwords to applications and completely eliminate the
time that passwords stay in the memory during password
verification.

To achieve this goal, we propose a new password
Caching and Verifying method based on TPM, called Pwd-
CaVe. In PwdCaVe, the security of passwords is enhanced
through TPM protection during password verification as
well as password caching. Password verification within
TPM is enabled through performing password related cal-
culations using a TPM provided protocol.

PwdCaVe uses the authorization data (authdata) field of
objects in the TPM to cache passwords. This field is en-
crypted by the TPM when the object is stored out of the
TPM. Passwords cached in this way can be loaded into
the TPM directly along with the objects, without being de-
crypted and released into memory.

During password verification, PwdCaVe first loads the
password into the TPM, and then the server will communi-
cate directly with the TPM to check the correctness of the
password. To verify the passwords with the limited compu-
tational ability of TPM, we propose a novel way to verify
the passwords using the Object Independent Authorization
Protocol (OIAP) provided by TPM. OIAP will be used to
verify the content of the authdata field of an object, i.e. the
password in PwdCaVe. With OIAP, all password-related
operations are performed in the TPM, therefore passwords
do not need to be delivered to applications and appear in the

IEEE
computer
psouety

memory during password verification.

PwdCaVe combines the TPM-based password caching
and verification seamlessly, and eliminates the time that
passwords appear in the memory during password verifica-
tion completely. In PwdCaVe, once a password is cached in
the TPM, it does not need to be exposed to external entities
any more, even during the verification phase. Thus Pwd-
CaVe provides stronger security than existing methods used
by current password managers.

We implement a prototype on Linux and demonstrate
the feasibility of PwdCaVe by applying the prototype on
widely used OpenSSH. The experiments show that the
implementation decisions we have made is practical with
very small modification requirements and negligible perfor-
mance overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of PwdCaVe. Section 3 and 4
describe the password caching and verification method sep-
arately. Section 5 describes a prototype of PwdCaVe and
its application to OpenSSH. Section 6 presents the related
work and Section 7 concludes the paper.

2 Overview of PwdCaVe

TPM provides the capability to protect sensitive data.
Some commercial password managers have already used
the TPM hardware to protect passwords by storing them in
TPM. However, these managers do not participate in pass-
word verification, putting the burden on the applications to
prove the correctness of the passwords. Each time during
password verification, the password manager still needs to
deliver the password to the application (usually in plain-text
form) because the password is required by the application to
generate verification messages. This propagates the pass-
words out of the protection boundary of TPM and causes it
being vulnerable to attacks (in this paper we are only con-
cerned with software attacks).

Unlike these methods, PwdCaVe uses TPM not only in
password caching, but also during password verification.
Passwords are cached in the authdata field of objects and
are stored in the protected storage of the TPM along with the
object. This caching method guarantees that the passwords
can not be retrieved by any external entities, so it provides
stronger protection than existing password managers.

The key idea of password verification using TPM can be
described as follows. During password verification, Pwd-
CaVe first loads the object whose authdata field holds the
password into TPM from the protected storage. Then the
server sends a command to TPM to access the object. Fi-
nally the TPM returns the result message to the server. The
server is able to judge whether the password kept in the au-
thdata field is correct according to the return message. A

756

‘ User ‘

‘ User ‘

Application
v

‘ Server ‘ Server

~

Application D

| password

Protected by
the TPM

encrypted
password

encrypted
password

Protected
Storage

Protected
Storage

a: Existing Methods b: PwdCaVe

password-related

—» verify o
Y computations

=

Figure 1. Existing methods vs PwdCaVe

detailed description on the verification process will be pre-
sented later.

During the whole process, we can see that, the return
message is generated by the TPM, and all password-related
computations are also performed in the TPM. The respon-
sibility of the application in PwdCaVe is only to relay the
messages between the TPM and the server. Because the
messages do not contain the password, the password will
never appear in the memory of the application. Through
the whole process of password verification, the password is
within the protection boundary of the TPM.

A comparison of existing methods and PwdCaVe is
shown in Figure 1. We can see that the main difference
is that the password related computation is moved to TPM
from the applications.

3 Password Caching in PwdCaVe

TPM provides the capability of protected storage, an
ideal location to keep sensitive data such as passwords. Ex-
isting commercial password managers that support TPM
store passwords in the protected storage as opaque data blob
and TPM does not understand the meaning of the data. The
key difference of PwdCaVe caching method is that it stores
passwords in the authdata field of an object. Passwords
could be recognized by the TPM as the authorization data
of objects, so it is possible for the TPM to load them from
the protected storage and use them to perform meaningful
actions.

3.1 The Protected Storage of TPM

The TPM chip contains a small amount of volatile mem-
ory that can be used to keep a number of currently in-use
keys. This memory is isolated from the outside environment

and can be considered to be absolutely secure from the per-
spective of software. Due to the small size of the on-chip
memory, inactive keys is normally removed from the TPM
chip and stored in external media (e.g. memory or disk).
Because external media could be accessible by any entity,
keys are encrypted by the TPM before they are removed to
enhance security.

The cryptographic key used by TPM is an RSA key
called storage key (SK). The private key of the SK will
never appear out of the TPM in plain-text form, thus only
the TPM is able to decrypt the inactive keys. The SK can
also be used to encrypt any data, while TPM typically does
not understand the semantics of these data and treats them
as opaque data. Only TPM is able to decrypt these data, as
well as inactive keys. The media used to store inactive keys
and other encrypted data can be considered as the extension
to the on-chip memory of a TPM. This media is called the
protected storage.

An SK itself may be moved out of the TPM too, so it
needs to be encrypted by another SK. At this time, a parent-
child relationship is established between the two SKs. The
encrypting SK is the parent SK and the encrypted SK is the
child SK. Thus, all SKs of a TPM form an SK hierarchy, the
root of which is the Storage Root Key (SRK).

3.2 Caching Passwords in the Authdata
Field

Storing passwords as opaque data is a common way to
use the TPM to cache passwords, which is adopted by many
current password managers. In order to provide the ability
to verify the password, PwdCaVe uses a different password
storing method.

There are a lot of objects in the TPM, such as SKs and
opaque data blobs. Each of them has an authdata field.
Originally the authdata field serves as the password to ac-
cess the object, but it will be used to store users’ passwords
in PwdCaVe. The authdata field is encrypted by TPM when
the object is stored in the protected storage, so passwords
cached in this way are under the protection of the TPM.
Additionally, TPM provides no commands to retrieve the
content of the authdata field, so adversaries have no means
of stealing the password kept in the authdata field except
using brute force attacks.

We use SK objects to cache passwords in the authdata
fields. If an SK is used in this way, it will not be used to
encrypt/decrypt other data any more. This type of SK will
be referred as Password SK (PSK) in this paper.

The authdata field has a fixed length of 20 bytes, de-
signed to store Hash values. PwdCaVe could automati-
cally translate user-input (easier to remember) passwords to
passwords with Hash functions. Extending passwords with
Hash functions increases the difficulty of dictionary attacks

757

SRK

authdata of SRK
Password Domain 1 Password Domain 2

77

DSK

authdata of DSK

DSK

authdata of DSK

PSK PSK

‘ password ‘ ‘ password

Figure 2. Password domain

and enhances the security of passwords. More complex and
powerful versions of this technique have been used in other
work, such as PwdHash [17] and Passpet [25]. These tech-
niques could also be integrated into PwdCaVe.

3.3 Password Domain

A hardware system is usually equipped with only one
TPM chip. If more than one user shares this system, their
passwords will have to be cached in the same TPM. In order
to prevent a user from using another user’s passwords, we
introduce the concept of password domain in PwdCaVe.

When stored in the protected storage, a PSK is encrypted
by its parent SK. If this PSK is used later, the TPM must
load it and decrypt it using its parent SK. At this time, the
external entity who issues the command to use the PSK
must provide evidence to show that it knows the authdata
of the parent SK. In other words, the use of a password
stored in a PSK’s authdata field is under the control of the
PSK’s parent SK. A parent SK may control a number of
PSKs. The set of all passwords stored in the authdata fields
of these PSKs is referred as a password domain, and the
parent SK is called its Domain SK (DSK). The structure of
the password domain is shown in Figure 2.

To use passwords in a password domain, a user must
know its DSK’s authdata. The authdata acts as the pass-
word to access this domain. Each user is capable of creating
his/her own password domains, and set passwords to his/her
domains to prevent other users from accessing them. In
this way, PwdCaVe prevents one user from accessing other
users’ passwords cached in the same TPM.

4 Password Verification in PwdCaVe

The key problem with existing password verification
methods is that the password-related computations are per-
formed in the application during password verification.
Therefore the password manager is required to decrypt the
password and deliver it to the application, resulting the pass-
word appearing in the memory in plain-text form. To solve

this problem, PwdCaVe performs password verification in
TPM and moves password-related computations from the
application to TPM.

TPM is a sealed chip, whose internal software is burned
by the manufacturer, thus not programmable. The only
computational abilities we can use to complete the task of
password verification is the commands it provides, which
are defined in the specifications of the TPM [20].

To guarantee the security requirements, the commands
used to perform password verification should satisfy the fol-
lowing two requirements.

1. These commands must load the password from the
protected storage directly, instead of receiving it from
external entities, such as the application.

2. The results of these commands must not contain the
password in plain-text form.

The two requirements guarantee that the password need
not and will not be propagated out of the protection bound-
ary of the TPM. However, TCG does not provide a spe-
cific command that satisfy the two requirements straight-
forwardly. After extensive studies, we find out that there is
a protocol called OIAP that can be exploited to complete
the task.

4.1 The OIAP Protocol

The OIAP protocol is originally used in TPM to check
whether an external entity knows the authdata of an object
when it issues a command to access the object. OIAP is
based on the HMAC mechanism [3], which is capable of
assuring the two parties of communication that they use the
same secret key to compute the HMAC code and the mes-
sages between them are not tampered.

External entities communicate with TPM through mes-
sages. The commands they send and the results TPM re-
turns are all messages. If a command is used to access an
object, the external entity is required to provide evidence to
prove its knowledge of the authdata of the object and the au-
thenticity of the command message. To do this, the external
entity needs to calculate the HMAC code of the command
message and append it to the end of the message. The secret
key used is the authdata that the external entity knows.

After receiving the command message, the TPM authen-
ticates it by recalculating its HMAC code, with the authdata
of the object in the TPM as the secret key, and comparing
the HMAC code with the one calculated by the external en-
tity. If they are equal, the TPM is convinced that the secret
key used by the external entity is the same as the authdata
of the object. Then the TPM executes the command and re-
turns the result. The return message is also proved by the
TPM and the external entity can check it in the same way.

758

The details of the OIAP protocol can be found in the speci-
fication of the TPM [20].

With the help of the OIAP protocol, TPM is able to en-
sure that the external entity knows the authdata of the object
and the command message is not tampered. On the other
hand, through checking the return message, the external en-
tity is also able to ensure that the authdata field of the object
contains the same value as expected.

4.2 Password Verification Using OIAP

In this section, we will show how PwdCaVe uses the
OIAP protocol to verify passwords. In the caching method
of PwdCaVe mentioned above, the password is kept in the
authdata field. Now let the server be the external entity men-
tioned above. By using OIAP, the server is able to verify
whether the password contained in the authdata field is the
same as the one stored in the server.

The process of password verification can be divided into
two stages. In the first stage, the object whose authdata field
contains the password to be verified needs to be loaded into
the TPM. The object is encrypted when it is stored in the
protected storage and TPM will decrypt it, including its au-
thdata, during the load operation. The decryption is done
inside the TPM, so the authdata, i.e. the cached password,
can be considered to be loaded from the protected storage
directly.

In the second stage, the server sends a command to the
TPM to access the object and checks the return message to
see if the authdata field of the object contains the correct
password. The HMAC code of the return message is cal-
culated inside the TPM, and consequently the password is
not exposed to external entities. In a word, during password
verification, passwords need not be released out of the TPM
and delivered to the application, so the password verifica-
tion method of PwdCaVe is more secure than existing ones.

In PwdCaVe, password verification involves three par-
ties: the server, the client software, and the TPM residing
in the client. The server communicates with the TPM, and
the messages between them are relayed by the client soft-
ware. The detailed interactions among them are shown in
Figure 3. The steps are:

1. The client software issues a load command, such as
LoadKey or LoadKey2, to load the object whose auth-
data field contains the password to be verified.

2. The software issues an “OIAP” command to the TPM
to start a new OIAP session.

3. Upon receipt of the OIAP command, the TPM allo-
cates a new session. After that, it generates a random
value neyen, Which is used to defend replay attacks,
and sends the value to the client software, as well as
authhandle, the handle of the session.

10.
11.

Client

1: load the object

2: OIAP

3: Neyen and authhandle

4: Nyven and authhandle

>

6: comm, n,qq and auth,

5: generate 1,4 and
calculate auth,.

7: comm, n,gq and auth,

9: ret, Ny, and auth,

8: generate n,,,," and
calculate auth,

>

10: ret, ne,.," and auth,

> 11: verify ret

Figure 3. The process of password verification

. The client software passes neyen, and authhandle to the

server. Now the OIAP session between the server and
the TPM has been established.

. The server also generates a random value 7,44, Whose

function is the same as 7n.,en. Then, it assembles a
command message comm, which is used to access the
object just loaded. The server calculates auth., the
HMAC code of comm, with the password stored in the
server as the secret key.

. comm, n,qq and auth, are sent to the client software.

The client software passes them to TPM.

. TPM performs checking on comm according to auth,

and the authdata of the object. If succeeded, TPM will
execute the command. Then TPM generates a new ran-
dom value 7., , and assembles the return message
ret based on the result of the command. auth,, the
HMAC code of ret, is calculated in the TPM, with the
authdata of the object as the secret key.

. ret, Neyen, and auth, are returned to the client soft-

ware.
The client software passes them to the server.

The server checks ret according to auth, and the pass-
word stored in the server. If passed, the server is able

759

to ensure that the password kept in the authdata field
of the object in the TPM is the same as the one saved
in the server. Therefore it allows the client to log in.
Otherwise the login request is denied.

Through the whole process of password verification, the
user password is kept in and protected by TPM all the time.
This eliminates the time that passwords stay in memory
once it is cached in TPM and enhances the security of pass-
words.

5 A PwdCaVe Prototype

We have implemented a prototype of PwdCaVe on a Dell
OptPlex GX620 system, which comes with a TPM chip
produced by STMicroelectronics. The TPM chip complies
with the TPM 1.2 specifications. The system runs Linux
2.6.18, containing a generic TPM driver. The prototype is
applied to a well-known application OpenSSH 4.6p1.

5.1 Implementation

Figure 4 shows the structure of the prototype, as well
as its application to OpenSSH. PwdCache is the password
manager in PwdCaVe. It is implemented as a daemon run-
ning with the root privilege. PwdCache interacts with the
TPM and provides password caching and verification ser-
vices to applications in the client through sockets.

sshd pam_TPM.so

Server

Client

‘ PwdCache ‘ ‘

Figure 4. The structure of the prototype

The test application we used is OpenSSH 4.6p1, whose
client side is ssh and server side is sshd. Both sides need
to be modified, but the modification requires very little ef-
fort. In ssh, only one function, userauth_passwd, needs
minor modification. The original userauth_passwd func-
tion prompts a user to input his/her password, and sends
the password to the server, while the new userauth_passwd
function allows a user to choose whether to input a new
password or to select a cached one from PwdCache. The
new function is also responsible of passing messages be-
tween PwdCache and sshd.

The modification to sshd is even simpler. Because sshd
can be configured to use the Pluggable Authentication Mod-
ule (PAM) framework [15, 18], we implement the server-
side logic of password verification as a PAM module, called
pam_TPM.so. What needs to be changed in sshd is only
the conversation function sshpam_passwd_conv. The new
conversation function passes the connection between ssh
and sshd to pam_TPM.so, instead of the password received
from ssh. The remainder of password verification is done in
pam_TPM.so.

In the modified OpenSSH, when a user is asked to pro-
vide his/her password, he/she can choose to input a new
password, and whether to cache the new password at his/her
discretion. The user can also choose to select a password
from PwdCache. To make the selection easier, the user is
allowed to assign a meaningful name and a piece of descrip-
tion to the password when it is cached. After that, the user
can select the password by entering its name or picking its
name from a list.

If a user chooses to input a new password and decides
not to cache the password, ssh sends the password to sshd
directly, just as the unmodified ssh does. If the user de-
cides to cache the new password, the password is first sent
to PwdCache and stored in the authdata field of an SK in
the protected storage. Then the SK is loaded into TPM
by PwdCache. If the user chooses to select a password
cached before, the SK containing the selected password is
also loaded into the TPM by PwdCache. Before that, the
user is asked to provide the authdata of the password do-

760

main where the password resides. After the SK is loaded,
ssh informs pam_TPM.so to send a command to the TPM
to access the SK just loaded. The result of the command is
returned to pam_TPM.so to verify the password. The com-
mand message and the return message are relayed by Pwd-
Cache and ssh.

If a user inputs a new password, no matter whether the
user decides to cache it or not, it is cleared promptly after
being used, both in ssh and PwdCache, in order to lower the
risk of being attacked.

5.2 Choosing the Object Type and TPM
Command

While implementing password caching in PwdCaVe,
there are several object types in the TPM that we can choose
from. The desired type of objects should not be opaque to
the TPM when they are stored in the protected storage, oth-
erwise the TPM can not load it directly from the protected
storage. There are three candidates satisfying this require-
ment: the attestation identity key, the signing key and the
storage key. We choose the storage key in this prototype,
although other object types could be used as well.

To choose an appropriate command to access the object,
the following principles should be followed:

1. The desired command should be as simple as possible.
Due to the limited computation capability of the TPM,
some complex commands may take a very long time,
especially those involving encryption and decryption
operations. For example, the TPM_CreateWrapKey
command takes dozens of seconds to complete.

2. The desired command should be able to operate on
multiple objects in the TPM. Because each object can
hold only one password in PwdCaVe, many objects are
needed to cache passwords.

3. The desired command should not change the state of
the TPM, because the TPM may be used by other ap-
plications, which should not be affected by the pass-
word verification technique.

According to these principles, we choose the
TPM_GetPubKey command, which is used to get the
public portion of an RSA key pair. It is very simple, involv-
ing no encryption/decryption operations, taking only about
120 milliseconds to complete on our platform. It does not
change the state of the TPM. Furthermore, its target could
be any of the RSA key pairs, including attestation identity
keys, signing keys, storage keys, etc. So TPM_GetPubKey
satisfies the above principles.

5.3 The Creation of the Storage Key

As we mentioned above, the storage key (SK) object type
is selected to cache the passwords. When there is a pass-
word to cache, PwdCache needs to find or create a spare
SK, and store the password in its authdata field. A straight-
forward way to do this is to use the TPM_CreateWrapKey
command. This command is used to create a new SK and
assign the password to the authdata field of the new SK.
However, because the TPM_CreateWrapKey costs dozens
of seconds, it is too expensive for this purpose.

Instead, we can use the CPU of the host platform to em-
ulate the creation process because the format of the SK is
public [20]. The emulation involves creating an RSA key
pair and encrypting its private portion with the public key
of the parent SK, as well as encrypting the password and
storing it in the authdata field of the new SK. In this way,
the time to create an SK is reduced to 1 to 3 seconds, which
is acceptable in most cases.

When a password is removed from the password cache, it
is unnecessary to delete the SK used to cache the password
because the SK can be reused later. PwdCache only needs
to clear the authdata field of the SK and mark it as spare.
The spare SKs are collected in an SK pool. When a new
password arrives, PwdCache first examines whether there
is any spare SK in the SK pool, which can be used to cache
the new password. In our experiments, the whole process
takes only about 30 microseconds.

5.4 Discussion

Several existing methods that support TPM have used
TPM to cache passwords. When a password is cached, it
is encrypted by an SK and stored as an opaque data blob
in the protected storage. However, if the authdata of the
SK is stolen by an adversary, he/she can send a command
to the TPM to decrypt the data blob and get the password.
PwdCaVe caches passwords in the authdata field of the SK.
When an SK is moved out of the TPM, its authdata, i.e.
the password, will be encrypted by its parent SK. Besides,
TPM provides no commands to retrieve the content of the
authdata field. This shows that, PwdCaVe is more secure
than existing methods that support TPM even in terms of
password caching protection.

When verifying a password, existing methods require the
password manager to deliver the plain-text password to the
application, which makes the password vulnerable to at-
tacks. In PwdCaVe, during password verification, the pass-
word is loaded into TPM directly from the protected stor-
age, and the password-related computations are also per-
formed in TPM. Through the whole process of password
verification, the password is not delivered to the application
and does not appear in memory. It is within the protection

761

boundary of the TPM all the time. This shows that, Pwd-
CaVe guarantees that passwords are immune to attacks such
as memory viewer and phishing during password verifica-
tion.

Through the discussions above, we can tell that Pwd-
CaVe provides stronger password security than existing
methods, both during password caching and password veri-
fication.

However, we should also mention that PwdCaVe does
not guarantee the safety of passwords during the password
input phase. If no effective countermeasures have been ap-
plied during password input, the password may be stolen
by adversaries through attacks such as keylogger and fake
login interface. Many researches have attempted to find a
secure way to input passwords into the TPM [13, 14]. Al-
though this is out of the scope of this paper, these techniques
can be easily integrated into PwdCaVe to provide stronger
security.

Additionally, PwdCaVe may suffer from offline dictio-
nary attacks. Because the messages between TPM and the
server are not protected by TPM, a malicious application
could intercept them and perform an offline dictionary at-
tack. If a user uses a “bad” password, his password may be
cracked. While we did not address this specifically in Pwd-
CaVe, many password strengthening techniques [25, 1, 5]
can also be integrated into PwdCaVe to alleviate this prob-
lem.

6 Related Work

Using hardware to enhance security is not new [8]. It
has been used in a lot of work, such as Dyad [24] and
XOM [12]. TPM is a secure coprocessor whose specifi-
cation is developed by TCG. It is usually implemented as
a sealed chip that contains necessary resources to perform
computations and provides an isolated execution environ-
ment. According to an IDC report [16], most PCs will be
equipped with TPMs in the near future. The main objective
of the TPM is to attest to the healthy state of a platform and
to authenticate a platform. In PwdCaVe, we use the “side
effect” of its commands to verify passwords.

Pure-software password managers, such as Gnome-
Keyring [10] and Mac OS Keychain [21], are not able
to protect the keys used to encrypt/decrypt passwords.
Some commercial password managers, such as Wave’s EM-
BASSY [22] and IBM’s Client Security Solution [?], use
TPM to enhance their security. However, they are not
able to provide protection to passwords during verifica-
tion. PwdCaVe uses the TPM in both password caching
and password verification, providing stronger protection to
passwords.

Smart card is another hardware used to enhance the secu-
rity of user authentication. Some work have used it in user

authentication[19, 11, 4]. The authentication scheme used
in these work is based on PKI systems. It is not as common
as password-based applications. Additionally, the smart-
card-based solution requires additional hardware, i.e. the
card reader, which is not equipped as widely as the TPM.

Because the authdata field is designed to hold hash val-
ues, we translate what users input into hash values. Some
more complex and secure techniques that use hash func-
tions to strengthen users’ passwords are proposed in other
work [25, 1, 5, 7, 6]. These techniques can also be used in
PwdCaVe.

7 Conclusion

In this paper, we propose a new TPM-based password
caching and verifying method, called PwdCaVe, which uses
TPM in both password caching and password verification.
Once a password is cached in the TPM, it will never be
released out of the TPM, even in later password verifica-
tion. PwdCaVe eliminates the time that passwords stay in
the memory during verification, and therefore keep pass-
words from attacks in memory.

Our experiments on OpenSSH with a prototype imple-
mentation of PwdCaVe show that only small modifications
are needed to apply PwdCaVe to existing applications.

References

[1] M. Abadi, T. M. A. Lomas, and R. Needham. Strengthening
passwords. Technical Report 1997 - 033, Digital Systems
Research Center, September 1997.

T. Aron. Client security solutions, October 2004.

M. Bellare, R. Canettiy, and H. Krawczykz. Keying hash
functions for message authentication. In N. Koblitz, edi-
tor, the 16th Annual International Cryptology Conference
on Advances in Cryptology, LNCS 1109, pages 1 — 15, Santa
Barbara, California, 1996. Springer-Verlag.

C.-C. Chang and J.-S. Lee. A smart-card-based remote au-
thentication scheme. In L. T. Yang, X. Zhou, W. Zhao,
Z. Wu, Y. Zhu, and M. Lin, editors, the 2nd International
Conference on Embedded Software and Systems, LNCS
3824, pages 445 — 449, Xi’an, China, 2005. Springer-Verlag.
J. A. Halderman, B. Waters, and E. W. Felten. A convenient
method for securely managing passwords. In the 14th Inter-
national Conference on World Wide Web, pages 471 — 479,
Chiba, Japan, 2005. ACM Press.

A. H. Karp. Site-specific passwords. Technical Report HPL-
2002-39, HP Laboratories Palo Alto, May 2003.

J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure appli-
cations of low-entropy keys. In the Ist International Work-
shop on Information Security, LNCS 1396, pages 121 — 134,
Korea, 1998. Springer-Verlag.

S. T. Kent. Protecting Externally Supplied Software in Small
Computers. PhD thesis, Massachusetts Institute of Technol-

ogy, 1980.
A. Kumar. Discovering passwords in the memory, Novem-

ber 2003.

(2]
(3]

(4]

(3]

(6]
(7]

(8]

(9]

762

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

A. Larsson. Proposal for inclusion in desktop: Gnome-
keyring. http://mail.gnome.org/archives/
desktop-devel-1ist/2003-November/
msg00555.html, November 2003.

S.-W. Lee, H.-S. Kim, and K.-Y. Yoo. Improved efficient re-
mote user authentication scheme using smart cards. /EEE
Transactions on Consumer Electronics, 50(2):565 — 567,
2004.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In the 9th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 168 — 177, Cam-
bridge, Massachusetts, United States, 2000. ACM Press.

J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-
believing: Using camera phones for human-verifiable au-
thentication. In IEEE Symposium on Security and Privacy,
pages 110- 124, Oakland, California, 2005. IEEE Computer
Society Press.

J. M. McCune, A. Perrig, and M. K. Reiter. Bump in the
ether: A framework for securing sensitive user input. In the
2006 USENIX Annual Technical Conference, pages 185 —
198, Boston, MA, 2006.

A. G. Morgan. Pluggable authentication modules for linux.
Linux Journal, 1997(44es), 1997.

S. Rau. The trusted computing platform emerges as
industry’s first comprehensive approach to it security.
https://www.trustedcomputinggroup.org/
news/Industry_Data/IDC_448_Web.pdf, Febru-
ary 2006.

B. Ross, C. Jackson, and N. Miyake. Stronger password
authentication using browser extensions. In the 14th Usenix
Security Symposium, pages 17 — 32, Baltimore, 2005.

V. Samar. Unified login with pluggable authentication mod-
ules (pam). In the 3rd ACM conference on Computer and
Communications Security, pages 1 — 10, New Delhi, India,
1996. ACM Press.

H.-M. Sun. An efficient remote use authentication scheme
using smart cards. IEEE Transactions on Consumer Elec-
tronics, 46(4):958 — 961, 2000.

Trusted Computing Group.
trustedcomputinggroup.org/.

S. d. Vries. Securing mac os x, May 2006.
Wave. Wave systemsembassy trust suite portfolio enables
secure business computing, 2003.

S. Xenitellis. Security vulnerabilities in event-driven sys-
tems. In the IFIP / SEC2002 Conference on Security in the
Information Society: Visions and Perspectives, pages 147 —
160, Cairo, Egypt, 2002. Kluwer Academic Press.

B. Yee and J. D. Tygar. Secure coprocessors in electronic
commerce applications. In the Ist USENIX Workshop on
Electronic Commerce, pages 155 — 170, New York, 1995.
USENIX Association.

K.-P. Yee and K. Sitaker. Passpet: Convenient password
management and phishing protection. In the 2nd Symposium
on Usable Privacy and Security, pages 32 — 43, Pittsburgh,
Pennsylvania, 2006. ACM Press.

http://www.

