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Abstract—Validating function pointers dynamically is very
useful for intrusion detection since many runtime attacks
exploit function pointer vulnerabilities. Most current solutions
tackle this problem through checking whether function pointers
target the addresses within the code segment or, more strictly,
valid function entries. However, they cannot detect function
entry attacks that manipulate function pointers to target valid
function entries but invoke them maliciously.

This paper proposes FPValidator, a new solution capable of
dynamically validating the type equivalence between function
pointers and target functions, which can detect all function
entry attacks that violate type equivalence. An effective and
efficient type matching approach based on labeled type signature
is proposed to perform fast type equivalence checking. The
validation code and necessary type information are inserted
by a compilation-stage instrumentation mechanism, bringing
no extra burden to developers. We integrate FPValidator into
GCC and evaluation shows that its performance overhead is
only about 2%.

I. INTRODUCTION

Adversaries often intend to convert programs’ control
flow, so that they can take programs under their control. For
programs written in languages that support function pointers,
manipulating function pointers is an often-used attacking
method. An adversary could modify a function pointer to tar-
get an illegal address in order to serve his malicious purpose.
A well-known attack to tamper with function pointers is to
exploit buffer overflow vulnerabilities [1]. Adversaries could
also modify function pointers from outside, for example by
using procfs. Since function pointers may be maliciously
changed during execution, validating their values on the fly
is clearly useful for intrusion detection.

A key problem with dynamic function pointer validation
is how to judge that a pointer’s value is a valid address. We
need to define for each pointer a set of addresses that the
pointer is allowed to point to during execution. Ideally, a set
should satisfy the following two requirements, used to avoid
false-positives and false-negatives separately.
• Completeness: The set should contain all addresses that

the pointer probably targets in correct execution.
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• Precision: The set should only contain the addresses
that the pointer probably targets in correct execution.

To some extent the two requirements are conflicting.
Perfectly meeting both of them is very hard. It is usually
considered that completeness is prior to precision in that
users do not like to be interrupted by fake errors [2]. Existing
solutions, after guaranteeing completeness, try to improve
precision as far as possible. Several solutions define the set
as all addresses in code segments, or more strictly, valid
function entries [3], [4]. Although these solutions can meet
completeness well, they are not precise enough to detect
function entry attacks. Function entry attacks mean that an
adversary manipulates a function pointer to target a valid
function which however should not be invoked by that
pointer. This kind of attacks could cause serious security
problems. For example, an adversary could modify a pointer
to invoke the system function, which is contained in libc.so
and linked into most programs’ address spaces, to execute
an arbitrary command.

Some solutions try to find out accurate points-to sets.
Inlined CFI [5] deduces the sets from a CFG obtained by
static analysis. Unfortunately, such a CFG is usually not
accurate due to indirect branches. WIT [6] uses the static
points-to analysis [7] to compute the sets, but the result can
hardly be precise [8]. In the worst case, the set for a pointer
could contain all function entries.

In this paper we propose a new solution called FPVal-
idator, which uses a new method of defining the set of
possible targets, being precise enough to effectively detect
function entry attacks, as well as having no false-positives.
Our method is based on the fact that, in a statically-
typed language (e.g. C and C++), a function pointer should
only invoke functions of compatible types; otherwise the
program’s behavior could be unpredictable. Consequently,
we define the set for a function pointer as all functions whose
types are compatible with the pointer. With our method, an
adversary, if succeeding in tampering with a function pointer,
can only abuse compatible functions, making function entry
attacks much harder.

FPValidator validates function pointers through a fast
type matching method. In terms of programs developed with
statically-typed languages, efficiency is often an important
factor that needs to be considered. We should therefore
minimize the cost caused by dynamic type matching. In



fact, we do not need to adopt a complete and complicated
dynamic type system like those for dynamically-typed or
hybrid languages (e.g. [9], [10], [11], [12], [13]) which
usually causes considerable runtime overhead. Instead, we
propose a lightweight, fast type matching method based on
labeled type signature. Our method calculates the hashes of
type signatures of function pointers and functions during
compilation, and compares them during validation. Type
information and validation code fragment are inserted into
programs automatically by a compilation-stage instrumenta-
tion technique, causing no extra burden to developers. The
evaluation shows that the increased time cost is only about
2%, and the increased space cost is less than 8%.

The rest of this paper is organized as follows. Section
2 analyzes function pointer attacks, and demonstrates an
example of function entry attack. Section 3 describes the
details of our validation method, including the type matching
and the instrumentation. Section 4 describes the implemen-
tation and evaluation, as well as the security analysis. The
related work is discussed in Section 5. Finally we conclude
this paper in Section 6.

II. FUNCTION POINTER ATTACKS

When attacking function pointers, adversaries usually
modify function pointers to point to the code that could
serve their malicious purposes. Depending on where the
modified function pointers target, we divide function pointer
attacks into data region attacks (DRA), which target the code
injected into data segments, and code region attacks (CRA),
which target the addresses within code segments. CRA could
be further divided into function entry attack (FEA) and non
function entry attack (NFEA) (also known as arc injection
attack [1], [14]), according to whether the function pointers
target function entries.

On the other hand, function pointer validation, according
to precision, can be divided into four levels [4], listed as
follows.
• L1: the target must be in code segments.
• L2: the target must be a predefined position such as a

function entry.
• L3: the type of the function pointer and that of the

target function must match.
• L4: the target must belong to an accurate points-to

address set.
As the level increases, the validation becomes more pre-

cise and can detect more attacks. The L1 can only detect
DRA, while the L2 can detect both DRA and NFEA. The
L3, stepping further, can detect all FEA that involves type
violation, and the L4 can detect almost all function pointer
attacks.

FEA could cause serious security problems. Programs
often contain sensitive functions which should be called at
right time and with right parameters. Besides, some func-
tions, although contained in code segments, should never

1 t y p e d e f void (∗ f u n c t ) ( char ∗ , i n t ) ;
2
3 void foo ( char ∗name , i n t t y p e ) {
4 . . .
5 }
6
7 void func ( char∗ i n b u f , i n t l e n ) {
8 f u n c t fp ;
9 i n t param ;

10 char buf [ 1 6 ] ;
11 . . .
12 fp = foo ;
13 param = IPV4 ;
14 memcpy ( buf , i n b u f , l e n ) ;
15 fp ( buf , param ) ;
16 . . .
17 }

Figure 1. A buggy function and malicious input

be called in normal execution. For example, shared libraries
(e.g. libc.so) are linked as a whole into programs’ address
spaces, but many functions they contain are never used.
Some of these functions are “dangerous”, such as system
and execve, which may be invoked to execute arbitrary
commands. These functions may be abused by adversaries
through FEA.

Figure 1 shows a buggy function that could be exploited
by FEA. Line 8 declares a local function pointer, fp, followed
by a declaration of an local variable. Both may be overwrit-
ten by the buffer operation of line 14. Normally fp will point
to foo, and at line 15 foo gets to run. An adversary, however,
could deliberately construct a “bad” input to change fp,
calling another function instead. For example, assuming
the program is running on a 32-bit platform, an adversary
can construct an input buffer as in Figure 1. The size of
the input buffer is 24 bytes, containing at most 16 bytes
of a shell command string and the address of the system
function. The command string will be copied to buf, and
fp will be modified to point to system. Later when system
is called through fp, the adversary’s command is executed.
In this example, because the new target of fp is a legal
function entry, the attack can not be detected by the first
two validation levels.

In addition to the buffer overflow vulnerability, adver-
saries could also use other attacking methods to tamper with
function pointers, such as writing memory directly through



procfs. As long as they only exploit “legal” functions, their
attacks can not be detected by the L1 and L2 validation.

III. VALIDATING TYPE EQUIVALENCE

To mitigate the threat of FEA, FPValidator confines
function pointers to targeting only compatible functions. To
enforce this constraint, FPValidator compares at runtime the
type that a function pointer should point to and the type it
actually targets. Hereafter the former type is called point-to
type and the latter is called target type. If the two types do
not match, an exception is raised. With FPValidator, for an
adversary, only when the point-to type matches the type of
the function he wants to abuse does he have chances to carry
out a successful attack, making attacking much harder.

For statically-typed languages, this constraint is safe, that
is, it does not cause false-positives. When using statically-
typed languages, a developer exactly knows what type
of functions are desired for each indirect call statement.
Invoking a function of incompatible type is obviously an
error. It is notable that sometimes a developer could perform
type casting on a pointer in order to invoke functions of
other types. In this case the type after casting is treated as
the point-to type of this pointer. Consequently, type casting
has no impact on the safety of the constraint.

We propose a fast type matching approach to satisfy the
efficiency requirement of critical programs. This section de-
scribes the design of our approach, as well as the supporting
compilation-stage instrumentation mechanism. We use the C
language as the example, but our solution can also be applied
to other statically-typed languages.

A. Type Matching

In order to detect type violations, we need to define
criteria to determine whether the point-to type of a function
pointer matches its target type. Considering that function
pointers are usually used to invoke functions of exactly iden-
tical types, and compilers will generate warning information
if their types are different, we require that the point-to type
and target type must be equivalent. In general there are two
notions of type equivalence, namely structural equivalence
and name equivalence [15], but both of them have weak
points for function pointer validation.

Intuitively, structural equivalence suggests that the expres-
sions of two types are structurally identical. We can express
it in a more formal way. Types, except for basic types, are
composed by type constructors using other types. In fact
basic types can also be regarded as being composed by
special constructors using no other types. The composing
relationship can be expressed as

τ = T (τ1, τ2, ..., τn)

where T is a type constructor, such as function and record,
and τ1 to τn are depended types. Then τ = T (τ1, τ2, ..., τn)
and τ ′ = T ′(τ ′1, τ ′2, ..., τ ′n) are structurally equivalent if T =

T ′, and ∀1 < i < n, τi = τ ′i . Structural equivalence does not
consider type names and field names of record types, which
usually carry application-specific semantic information and
should be used to distinguish types. From programmers’
perspective, in most cases two types with different names
are not treated as being equivalent even though the structures
of their expressions are completely equal, so do two record
types whose field names are not identical.

Name equivalence means that two named types are equiv-
alent if their names are identical. In practice, however, it is
possible that two types are different but they have the same
name. Type names are unique within a compilation unit, but
not across units. For programs with multiple source files,
because source files are usually compiled separately, it is
possible and allowed that different types with the same name
are declared in different files if their scopes do not interfere
with each other. Thus name equivalence can not distinguish
these types.

To overcome the drawbacks of the two notions, we pro-
pose labeled structural equivalence, a mixture of structural
equivalence and name equivalence. First we modify type
constructors by adding labels to each depended types. The
composing relationship is then expressed as

τ = T (< τ1, l1 >,< τ2, l2 >, ..., < τn, ln >)

where li is the label for the τi that carries application-specific
information of τi. For some constructors the labels are
fixed, such as function which is expressed as function(<
τ1, ret >, < τ2, p1 >, ..., < τn, pn >); while for others they
depend on how the type is defined, such as record which is
expressed as record(< τ1, f1 >, ..., < τn, fn >) where fi

is the name of the ith field.
Based on the modified type constructors we can establish

a labeled type graph G = (V,E). V is the set of vertices,
each of which is a pair < T ,N (τ) > standing for a type
τ built by the constructor T with the name N (τ). For
anonymous types, N (τ) is null. E is the set of directed
edges denoting the building relationship. For a constructor
T , the edge connecting τ and τi is labeled with li. Figure 2
shows a simple list interface and its labeled type graph.

To simplify the type matching, type qualifiers, e.g. const
and volatile, are not taken into account, and we also do
not distinguish signed and unsigned types, because this kind
of type violations can hardly be exploited. We also do not
consider type names declared by typedef statements. They
are simply treated as aliases and replaced by its original type
in the type graph, because in practice typedefed types and
their origins are usually interchangeable.

For a type τ , we define its definition graph D(τ) as the
subgraph containing all reachable nodes from τ and edges
connecting them, which completely defines τ . For example
the definition graph of list is shown in Figure 3. Then we
define the labeled structural equivalence of type τ and τ ′



1 s t r u c t l i s t {
2 s t r u c t l i s t ∗ n e x t ;
3 void ∗ v a l u e ;
4 } ;
5
6 t y p e d e f i n t (∗ wal k e r ) ( void ∗ ) ;
7
8 void w a l k l i s t ( s t r u c t l i s t ∗ l s t , w a lk e r w) {
9 . . .

10 }

record

pointer

function

function

pointer

pointer

Figure 2. Example code and its labeled type graph

Figure 3. Definition graph of list

as that D(τ) and D(τ ′) are completely identical, including
their structures, type names and edge labels. More formally,
type τ = T (< τ1, l1 >, ..., < τn, ln >) and τ ′ = T ′(<
τ ′1, l

′
1 >, ..., < τ ′n, l′n >) is labeled structural equivalent if

N (τ) = N (τ ′), T = T ′, and ∀1 < i < n, τi = τ ′i and
li = l′i.

Labeled structural equivalence concerns not only type
information but also programmer-defined semantic informa-
tion, being more precise than simply structural equivalence
or name equivalence. It can overcome the deficiencies men-
tioned above.

B. Representing and Storing Type Information

In order to validate types of function pointers, we need
to store sufficient type information of function pointers and
target functions. On the other hand, to satisfy the efficiency
requirement, we expect that this information brings only a
little storage overhead and the type matching based on this
information is effective and efficient.

As mentioned previously, a type is completely defined
by its definition graph, so, for a function pointer or a
function, we only need to store the definition graph of
its type. Because the definition graph may be compared
across compilation units, we should develop a representation
scheme which can ensure that the same definition graph
appearing in different units is represented in the same form.
To do this, we propose a scheme capable of converting
a definition graph to a string, referred to as labeled type
signature, which is similar to but more precise than the
traditional type signature [16], [17], [18].

We use S(τ) to denote the labeled type signature of type
τ . Then, for τ = T (< τ1, l1 >,< τ2, l2 >, ..., < τn, ln >),
S(τ) is recursively defined as:

S(τ) = T N (τ) l1(S(τ1))l2(S(τ2))...ln(S(τn))

At the beginning of S(τ) is the type constructor, followed
by the type name, and then the label and recursive labeled
type signature of each depended type. The recursion termi-
nates when τ is a primitive type, because it depends on no
other types. For example the function pointer type walker,
which is declared by a typedef statement and denoted by
node 2 in the labeled type graph, has the following labeled
type signature.

S(walker) =
pointer ptr(function ret(int)p1(pointer ptr(void)))

Some types may be defined recursively, such as link which
depends on a pointer type that points to itself. To prevent
infinite loops in this case, we adopt an alias approach to
eliminate recursive dependence. While we are traversing the
definition graph, a type is assigned an unique alias at the first
time it is met. Later when the type is met again, we simply
use its alias to represent it, without recursively traversing
its depended types. We use the sequence in which types are
traversed as type aliases. For instance S(list) is equal to

record list next(pointer ptr(T1))value(pointer ptr(void))

where T1 is the alias of list.
The relationship between the type definition graph and the

labeled type signature is 1 to 1. That is to say, throughout
the whole program including all compilation units, each type
has a unique signature, and, on the other hand, the definition



graph can be accurately rebuilt according to the signature.
Hence we could use labeled type signatures to precisely
validate the type equivalence between function pointers and
their target functions.

Different labeled type signatures usually have different
length. Some signatures could be very long. In order to
simplify storing and comparing labeled type signatures, we
hash signatures and only store and compare their hash
values. The signature hashes for functions are stored in
a separate section of ELF files (executables or dynamic
libraries). When an ELF file is loaded, these signature hashes
are read in and organized as a hash table, indexed by function
entries. For executables, the addresses of function entries
are determined at the linking stage, so they can be stored
along with signature hashes. However, for dynamic libraries,
these addresses are determined at the load stage, so they are
calculated after the load point of the library is determined.

The hash table is marked as read-only after signature
hashes are hashed in, in order to prevent malicious mod-
ifications. The signature hashes for function pointers are
treated as constants stored in read-only data section, which
is discussed in details in the next subsection.

C. Instrumenting Programs

FPValidator checks function pointers at runtime. In order
to prevent adversaries from circumventing the dynamic
validation, it is desired that the validation is performed
immediately before each indirect call. We use a compilation-
stage instrumentation mechanism to achieve this goal.

First of all, we need to identify indirect function calls. In
general a call can be expressed as (fp expr)(args), where
fp expr could be an address, a function pointer variable or
a complex expression consisting of operations such as array
indexing, field references, type castings, or even another call,
and args is the parameter list. Whatever fp expr is, as
long as its value may change at runtime, the call is treated
as an indirect call and the type of target functions should
be the type of fp expr. To determine whether fp expr
could change, we traverse its Abstract Syntax Tree (AST).
If its value directly or indirectly depends on variables or the
results of function calls, the call is treated as an indirect call
and will be instrumented. In fact, if the value of a complex
expression may change, the expression as a whole can be
viewed as an implicit function pointer variable. FPValidator
validates not only function pointer variables but also function
pointer expressions. It has wider coverage than solutions that
only validate function pointer variables, such as [4].

Each indirect call is translated, by instrumentation, into
the code fragment shown in Figure 4. If fp expr is a
complex expression, it may have side effect. To prevent it
from being executed multiple times, at the beginning we
save the target address it generates into a local variable

fp, and later use the variable instead. HASH stands
for the hash of fp expr’s labeled type signature, which is

1 ({
2 t y p e o f ( f p e x p r ) fp = f p e x p r ;
3 h a s h t h = HASH ;
4
5 f p v a l i d a t e ( fp , h ) ;
6 fp ( a r g s ) ;
7 } )

Figure 4. Code after instrumentation

(a) Original AST

TARGET_EXPR

BIND_EXPR _tmp

STATEMENT_LIST

MODIFY_EXPR CALL_EXPR MODIFY_EXPR

__fp_check

args

__fp __hfp_expr CALL_EXPR

(b) AST After Instrumentation

Figure 5. Instrumenting AST

generated at compilation time and declared as a constant.
Its location is therefore within the read-only data section.
During execution, HASH is assigned to a local variable,
which is in turn passed as a parameter to fp validate,
the validating function, along with the value of fp (i.e.
the target address). We enclose all statements as a compound
statement whose value is equal to that of its last statement,
i.e. the result of the indirect call, in that the result may be
used as a right value in some cases, such as the statement
a = (fp expr)(args).

fp validate is the function containing the actual val-
idation code, which is implemented in a shared object and
linked dynamically, so that updating the validation code
is convenient, without requiring to recompile the program.

fp validate looks up the hash of the type signature of
the target function in the hash table according to fp, the
target address, and then compares it with h. If they are
identical, the function pointer and the target function are
type equivalent, otherwise the indirect call is illegal.



We accomplish the instrumentation through transforming
AST. AST is generated by the compiler, which contains
sufficient type information that we can use. We traverse the
AST of each function, finding nodes that represent indirect
call expressions, and replacing each of them with a new AST
corresponding to the code segment shown in Figure 4. The
original AST of an indirect call expression is depicted in
Figure 5(a). After instrumentation, according to whether the
return type of the indirect call is void, the original AST is
replaced by a BIND EXPR or a TARGET EXPR separately.
The AST for these two expressions are similar, except for
some subtle difference. We only show the AST of the latter
in Figure 5(b).

IV. IMPLEMENTATION AND EVALUATION

FPValidator can be applied to programs written in stati-
cally typed languages. We have integrated FPValidator into
gcc for GNU C. This section describes our implementation
and its evaluation.

A. Implementation

Our implementation includes two parts, namely an instru-
menting module (IMod) and an ELF rewriter (ELFRwt).
IMod is responsible for collecting type information and
instrumenting indirect call statements, while ELFRwt is re-
sponsible for rewriting the generated ELF file to add the type
hashes of functions. The architecture of our implementation
is shown in Figure 6.

IMod inserts the validation code at the compilation stage,
so we need to modify the compilation process. To minimize
the modification, we build IMod upon GCC Extension Mod-
ules (GEM) [19]. GEM patches gcc, adding a group of hooks
which can be used to invoke user-defined functions at certain
points. User-defined functions are encapsulated in dynami-
cally linked libraries which can be specified by command-
line options. IMod is implemented as a GEM module,
defining the function for the hook gem finish function which
is called after a function has been parsed and its AST has
been generated. In the hook function we traverse the AST,
searching for indirect call expressions and instrumenting
each of them. The instrumented AST is used later to generate
the ELF file. IMod also collects the type information of
functions, i.e. the hashes of type signatures, which is passed
to ELFRwt for building the type hash table.

The final ELF file is built by ELFRwt. ELFRwt is
implemented as a separate program executed after the ELF
file has been generated by gcc. It rewrites the ELF file,
adding a dedicated section to store the signature hashes of
functions. These hashes could be obtained from IMode if
the source code is available. However, sometimes we can
not get the source code, for example, when dealing with a
dynamic library provided by a thirty party. Fortunately, we
can still obtain signature hashes from head files which are
usually available, and rewrite the library to add these hashes.

IMod

ELFRwt

gcc
Source

File

AST

Type

Information

Final

Executable

ELF

File

Figure 6. Overview of the implementation

In this case, FPValidator can not validate indirect calls in
the dynamic library since the library is not instrumented,
but FPValidator can still validate whether other indirect
calls, when calling functions in the library, target compatible
functions.

B. Evaluation

FPValidator causes extra overhead, including the time
overhead of building and executing due to the instrumen-
tation and runtime validation, as well as the space overhead
due to the addition of type information. However, we will
demonstrate in this subsection that the increased overhead
is low.

Adversaries often tend to compromise programs that run
for a long time, especially those providing network services,
so that they can leave backdoors for future attacks. Therefore
we select several server programs as the benchmark, includ-
ing the Apache http server (httpd), the OpenSSH ssh server
(sshd) and the ProFTPD ftp server (proftpd). We measure
the overhead brought by FPValidator. The result is shown in
Table I.

The column Functions and Calls show the numbers of
function definitions and indirect call statements. The in-
creased compilation and storage cost is in direct propor-
tion to them. The column Building Time and Executable
Size compare the costs of versions built with and without
FPValidator. The increased building time is caused by the
operations of instrumenting indirect calls. Since the number
of indirect calls is small, the increased cost is less than
3%. The increased executable size is mainly cause by the
insertion of type information. Because with our method each
type can be represented by a single hash value, the space cost
is less than 8%. The column Runtime Overhead gives the
time cost spent on the dynamic function pointer validation.
It is determined by how often indirect calls are performed.
The result shows it is only about 2%.

C. Security Analysis

FPValidator implements the L3 function pointer valida-
tion, which checks the equivalence between the point-to type
and target type of function pointers. When using FPValida-
tor, all function entry attacks that violate type equivalence
can be detected. To bypass FPValidator, an adversary has



Table I
OVERHEAD

Program Funcs Calls Building Time Executable Size Runtime Overhead
Normal FPValidator % Normal FPValidator % Total Validate %

sshd 995 143 16.445s 16.509s 0.4% 484.9K 502.1K 3.5% 33,000µs 687µs 2.1%
proftpd 1,133 174 10.813s 10.971s 0.9% 734.9K 785.7K 6.9% 82,000µs 1,278µs 1.6%
httpd 2,032 324 78.469s 80.519s 2.6% 809.2K 869.1K 7.4% 115,000µs 2,436µs 2.1%

to find a vulnerability through which he can tamper with a
function pointer of the desired type. Thus the possibility of
carrying out a successful attack is much lower than that of
L1 or L2 validation.

The effectiveness of FPValidator depends on the integrity
of the validation code and type information, which are
integrated into ELF files. As long as the code segment and
the type information are not compromised, the validation
mechanism will not be circumvented. Since the code seg-
ment and the type information do not change after being
loaded, the memory they reside in is marked as read-
only during execution. Hence their integrity can easily be
verified by lower level software through cryptographic hash
functions. For example, the integrity of applications can
be verified by the OS kernel, by calculating the hashes of
code segment and type information, and comparing them
with trusted values. Similarly, the OS kernel itself can be
verified by virtual machine monitor. At last, the lowest level
software can be verified by some hardware solutions such
as the technology proposed by Trusted Computing Group
(TCG) [20].

D. The L4 Validation

If the compromised function pointer and the abused func-
tion are type equivalent, the attack will not be detected by
the L3 validation. In this case the L4 validation is required.
The L4 validation requires the precise set of possible targets
for each function pointer. Given these sets, the L4 validation
can be easily implemented in FPValidator. We just need
to replace the type information with the sets, and checks
whether the target address is included in the set, instead of
type matching.

However, there are some challenges in finding out precise
sets. If developers are responsible for giving all valid entry
sets, it is a tedious and error-prone task. Furthermore, it is
often impossible to list all entries at the development stage,
for some functions may be implemented by the third party
and loaded at runtime. Some solutions, such as Inlined CFI
and WIT, tries to find out precise sets via static analysis [21],
[22], but their results turn out to be not precise.

V. RELATED WORK

Manipulating function pointers is an often-used attacking
method. A lot of solutions have been proposed to thwart
against this kind of attacks. Among them we choose several
closely related solutions to compare with.

1 t y p e d e f void (∗ f u n c t ) ( void ) ;
2
3 i n t foo ( unsigned long parm ,
4 char ∗ i n b u f ,
5 i n t l e n )
6 {
7 f u n c t fp ;
8 char buf [ 1 6 ] ;
9 . . .

10 memcpy ( buf , i n b u f , l e n ) ;
11 fp = ( f u n c t ) parm ;
12 fp ( ) ;
13 . . .
14 }

Figure 7. A buggy function that could be exploited to circumvent
PointGuard

CFI is a safety property denoting that a programs ex-
ecution follows paths of its Control-Flow Graph (CFG)
determined in advance. Abadi et al propose an enforcing
method, called Inlined CFI [5], based on static binary
rewriting. Their method instruments each indirect branch,
validating its target according a CFG obtained statically.
However, such a CFG can hardly be precise. In order to
avoid false-positives, their implementation uses conservative
CFGs in which a call instruction may invoke any functions.

WIT [6] enforces CFI through compilation-stage instru-
mentation. Function pointers and functions, according to the
result of static points-to analysis, are labeled with colors. A
fragment of validation code is inserted before indirect calls,
checking whether the function pointer and the target function
have the same color. Since points-to analysis is not precise,
it is possible that all functions have the same color in order
to avoid false-positives.

Petroni et al propose a virtual machine based method
to enforce an approximate of CFI, called state-based CFI
(SBCFI) [4]. A monitor, running in the domain 0, validates
the global function pointer variables of the OS kernels in
other domains periodically. But their method only concerns
persistent attacks. Attacks finished within a period could
escape from being detected.

Program Shepherding [3] validates indirect branches by
dynamic binary translation. The validation code is inserted
by a dynamic translator, e.g. Dynamo [23] for their work,
into a code block before the block is executed. It checks the
targets of indirect branches by censoring a hash table which



Table II
COMPARISON OF RELATED WORK

Solutions Mechanism Coverage Level Attacks
DRA NFEA FEA

Inlined CFI Static Binary Instrumentation Indirect Branches L2
√ √

WIT Compilation-stage Instrumentation Indirect Calls L2+
√ √ √

?
SBCFI VM-based Monitoring Global Variables L2

√ √
Shepherding Dynamic Binary Instrumentation Indirect Branches L2

√ √
NE Memory Hardware Support Indirect Branches L1

√
FPValidator Compilation-stage Instrumentation Indirect Calls L3

√ √ √

contains all valid entries.

Non-Executable Memory (NE-Memory), such as Exec
Shield [24] and Openwall Linux patch [25], is capable of
marking some memory regions (e.g. stack and heap) as non-
executable, which usually requiring hardware support [26].
Thus, malicious code that is injected into stack or heap
and masquerading as data can not be executed, though
an adversary has succeeded in manipulating some function
pointers to target it. e-NeXSh uses a software approach, i.e.
monitoring all LIBC function and system-call invocations, to
create an “effectively” non-executable stack and heap [27].

The comparison of the above work with ours is shown in
Table II. Validation mechanism can be roughly divided into
instrumentation and monitoring. The former is harder to be
bypassed, while the later is more flexible. NE-Memory uses
another way to achieve the same effort of instrumentation-
based validation. Inlined CFI, Shepherding and NE-Memory
work at the binary level and deal with all indirect branches,
some of which are derived from, for example, switch
statements whose targets are actually fixed [28]; while
FPValidator and WIT validate all indirect calls whose targets
may be changed dynamically. SBCFI only validates global
variables, so it fails to detect attacks on local variables and
function pointer expressions. The validation levels of these
solutions are listed in the column level, and the detectable
attacks are marked with

√
. The level of WIT depends on

the precision of static points-to analysis. Currently it could
only reach L2 in some cases.

Some solutions try to protect function pointers from
being maliciously modified. For example, PointGuard [29]
encrypts pointers before writing and decrypts them before
reading. The encrypting and decrypting code is also in-
serted by a compilation-stage instrumentation mechanism.
Libsafe [30] and LibsafePlus [31] provide safe versions of
exploitable library functions such as strcpy and memcpy,
which could protect function pointers from being modified
through buffer overflow attacks. Stack-smashing protector
(SSP) [32] achieves this goal by rearranging local variables.
However, these solutions can not thoroughly defend against
illegal modifications. For example, the protection of Point-
Guard could be circumvented in some cases. Figure 7 shows
a buggy function that could be exploited to circumvent
PointGuard. Since PointGuard only encrypts pointers, an

adversary could modify parm through buffer overflow, and
then the modification will be propagated to fp at line 9.
To provide stronger security, protection and validation of
function pointers can be combined to work together.

VI. CONCLUSION

Function pointers are often attacked at the runtime by
adversaries to execute malicious code, so it is useful to
validate their values on the fly. But the validation performed
by existing solutions is not strict enough to detect function
entry attacks.

In this paper we propose FPValidator, a new solution
capable of dynamically validating the type equivalence of
function pointers and target functions, which is able to detect
all function entry attacks that manipulate function pointers
to invoke incompatible functions. The validation code is
inserted by a compilation-stage instrumentation mechanism,
bringing no extra burden to developers. We integrate FPVal-
idator into GCC, and the evaluation shows that it is effective
and efficient.

Currently we use C as the example language, but FPVal-
idator can also be used in other statically-typed languages.
C++, usually viewed as a super set of C, has a more
complicated type system. We are going to apply FPValidator
to C++ in our future work.
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