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Abstract. With the rapid progresses in trusted computing related research and
application, many trusted computing based security mechanisms have been pro-
posed to defend against threats in open, dynamic and distributed environments.
These mechanisms are supposed to serve as the security foundations in the un-
derlying systems. However, the correctness of these security mechanisms still re-
quire further examination and validation. We propose a Colored Petri Nets (CPN
or CP-nets) based approach to model the trusted computing based secure system.
In particular, with CPN, we model process management, data protection and late
launch mechanisms in the systems. Further, as case studies we use these mod-
els to investigate the memory protection mechanism in TrustVisor and remote
attestation based on dynamic root of trust, respectively; and the results demon-
strate that our models are indeed capable of depicting real secure system based
on trusted computing. With the advantages of CPN based modeling and analysis
(e.g., graphical representation, well defined semantics and a large number of for-
mal analysis methods), our models can well serve as the foundation for formal
analysis on the security properties of trusted computing enhanced systems.

1 Introduction

Internet has become a critical infrastructure for information dissemination and sharing
in our society. In this open, dynamic and distributed environment, it is, however, diffi-
cult to defend against software attacks in systems that span mutually distrust domains.
As a countermeasure, Trusted Computing Group (TCG) has proposed a series of spec-
ifications on trusted computing [44], in which the computer hardware is extended with
a Trusted Platform Module (TPM) [43]. The main idea of trusted computing is as fol-
lows: using the TPM as the root of trust, a trust chain can be built from the TPM to the
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final users through the operating system and upper layer applications. Since the intro-
duction of TCG specifications, many TCG-based secure systems1 have been proposed
from both the industrial and academical domains, such as the IBM Integrity Measure-
ment Architecture [40], the BitLocker [35] from Microsoft, Terra [13], Flicker [34],
TrustVisor [33]. Needless to say, the effectiveness of these secure systems is largely
dependent upon the correct usage of the trusted computing related technologies within.
Thus, it is crucially important to correctly build Trusted Computing Base with TCG
technologies, and guarantee that the trust chain is built up to the applications.

However, the theoretical study on trusted computing lags far behind its develop-
ment. Indeed, for most of the existing trusted computing based secure systems, there
still lacks formal verification on the (system) correctness from a theoretical point of
view. From the perspective of formal study, we refer to the correctness of a secure
system as that it functions according to the expected specifications. In this paper, our
particular concerns are security related specifications. Recent formal studies on trusted
computing mainly fall into two categories: on TCG specifications and on TCG-based
secure systems. For the former (correctness study on TCG specifications), the majority
of the existing formal modeling and analysis studies focus on key security mechanisms
in the specifications [47, 18], besides testing based analysis techniques [38, 46]. Usu-
ally formal verification [47] and the universally composable (UC) framework [18] are
employed to analyze the security properties. For the latter, analysis and verification of
the TCG-based security mechanisms mainly rely on testing based methods, and only a
few formal studies were proposed [1]. It is thus fair to say that formal verification on
TCG-based secure systems still has a long way to go. On the positive side, the recent
study of Logic of Secure System [6] based on the Protocol Composition Logic (PCL)
[5] demonstrates the possibility of employing formal methods to analyze TCG-based
secure systems.

In this paper, we propose a formal study on TCG-based secure systems with Colored
Petri Nets (CPN)[22–24]. In particular, CPN is employed to model and analyze the key
security mechanisms in the systems, including process management, data protection
and late launch. With the proposed models, we further conduct two case studies: the
memory protection mechanism in TrustVisor [33]; and remote attestation based on
dynamic root of trust [19, 44, 3].

The advantages of CPNs make it appropriate for modeling and analyzing TCG-
based secure systems. Our CPN based approach has the following benefits: (1) the ca-
pability of graphical representation of CPN makes it possible to simulate the key mech-
anisms in a complex TCG-based system in a graphical way; with the colored token in
CPN, it is possible to model complex system states; (2) the well defined semantics of
CPN can exactly define the behavior of a target system that is augmented with TCG,
and the widely studied CPN provides solutions to check properties of the target sys-
tem including liveness and safety; (3) with a large number of formal analysis methods
and tools that admit CPN, it is possible/convient to model and verify different security
properties of a TCG-based system.

1 Without special notice, we will use the terms: secure system, secure system based on trusted
computing and TCG-based secure system interchangeably in this paper.
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2 Preliminaries

2.1 Trusted Computing

In the TCG specifications, a trusted platform is supposed to provide features such as
secure storage and platform remote attestation. Trusted Platform Module (TPM) is the
core and root of trust for a trusted platform. TPM is a tamper resistant, self-contained
coprocessor, capable of providing a series of security functions, such as random number
generator, key management, digital signature and hash function, etc. TPM contains a
group of internal Platform Configuration Registers (PCRs). Equipped with a SHA-1
engine, TPM employs PCRs to provide PCR extend operation on specified machine
state data m: PCR Extend(m) : PCRi ← SHA − 1(PCRi||m). The content of
the PCRs represents a integrity measurement of the state of the underlying machine.
Remote attestation is a mechanism enabling the platform to attest to a remote entity of
its integrity measurement contained in the PCRs.

There are two types of trust chain for TCG based secure systems: one is built based
on the static root of trust for measurement since the system’s booting up [44]; the other
is based on the dynamic root of trust for measurement which is supported by the late
launch [19, 3]. The late launch can dynamically create a secure execution environment
by setting up a secure virtual machine or secure kernel. The late launch mechanism
works as follows: after receiving the request of late launch from the system, the CPU ex-
ecutes a privileged instruction (GETSEC[SENTER] for Intel, SKINIT for AMD);
the privileged instruction will enable several hardware protection mechanisms, includ-
ing disabling Direct Memory Access by setting the relevant bits in the system’s Device
Exclusion Vector (DEV), disabling the interrupts and debugging access; then the pro-
cess will execute a specified loader module(Secure Loader Block (SLB) for AMD, Au-
thenticated Module for Intel) at a given address; then the specified loader module will
securely measure and load a secure execution environment (Secure Virtual Machine for
AMD, Measured Launched Environment for Intel). Late launch allows to set up a se-
cure execution environment without rebooting the system, thus enabling an application
to run in a protected environment.

2.2 Colored Petri Nets

Colored Petri Nets (CPNs) were introduced as a full-fledged language for the design,
specification, simulation, validation and implementation of large software systems. CPNs
combine the strength of Petri nets with the strength of programming languages and are
widely employed in both academical and industrial areas for software system design,
implementation, simulation and validation. CPNs have a series of good features that
make it suitable for modeling and analyzing complex systems [22, 24].

Below, we will give a brief introduction to CPN. For the definition of multi-set,
please refer to [22, 24]. For a set A, we use AMS to denote the set of all multi-sets over
A, and 0 to denote the empty multi-set. Let A be a set. The power set of A, denoted as
PowerSet(A) or 2A, is the set of all subsets of A including the empty set.

A Colored Petri Net (CPN) can be represented as a tuple (Σ, P, T,A, N, C, G,E,
M0), where
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– Σ is a finite set of color sets, P , T and A are finite sets of places, transitions and
arcs, respectively. P

⋂
T=T

⋂
A = A

⋂
P =∅, and A ⊆ P ×T

⋃
T ×P . There are

two types of arcs for a transition: incoming arc and outgoing arc. When a transition
takes place, incoming arcs indicate that the input places shall remove specified
number of tokens, while outgoing arcs mean that the output places should add the
specified number of tokens. The exact number is determined by the arc expression,
defined by the expression function E.

– N is a node function N : A → P × T
⋃

T × P and it specifies the source and
destination of an arc.

– C is a color function, and C : P → PowerSet(Σ). C(p) specifies the set of
allowed colors for any token of place p. A token element is a pair (p, c), where
p ∈ P and c ∈ C(p). The set of all toke elements is denoted as TE = {(p, c)|p ∈
P

∧
c ∈ C(p)}.

– G is a guard function, mapping each transition t to a boolean expression G(t). Let
B stand for boolean type, which contains the elements {true, false}. Let Type(v)
denote the type of the variable v, and Type(expr) stands for the type of the ex-
pression expr. V ar(expr) denotes the set of variables in expression expr. So
∀t ∈ T : Type(G(t)) = B

∧
Type(V ar(G(t))) ⊆ Σ.

– E is an arc expression function, mapping each arc into an expression with type
C(p)MS (multi-set over C(p)), where p is the place of the given arc. That is ∀a ∈
A : Type(E(a)) = C(p)MS

∧
Type(V ar(E(a))) ⊆ Σ.

– M0 is the initial marking of CPN, and M0 ∈ (TE)MS .

In order to describe the behavior of CPN, we use the following notations for all
t ∈ T and for all node pairs (x1, x2) ∈ P × T

⋃
T × P : A(t) = {a ∈ A|N(a) ∈

P × {t}⋃{t} × P}; V ar(t) = {v|v ∈ V ar(G(t))
∨ ∃a ∈ A(t) : v ∈ V ar(E(a));

A(x1, x2) = {a ∈ A|N(a) = (x1, x2}; E(x1, x2) =
∑

a∈A(x1,x2)
E(a).

A binding of a transition t is a function b defined on V ar(t), which satisfies the
following conditions: ∀v ∈ V ar(t) : b(v) ∈ Type(v)

∧
G(t) < b >. For variable set

V ar(t), b associates each variable v ∈ V ar(t) with an element b(v) ∈ Type(t), and a
binding b is usually expressed in the form < v1 = c1, v2 = c2, ..., vn = cn >, where
V ar(t) = {v1, v2, ..., vn} and c1, c2, ..., cn are the data values such that ci ∈ Type(vi)
for 1 ≤ i ≤ n. Expression expr < b > means the value obtained by evaluating
the expression expr by substituting the variables in V ar(expr) as their values in b.
G(t) < b > means that the binding b satisfies the corresponding guard and its value
should be true. The set of all bindings for transition t is denoted as B(t). A binding
element is a pair (t, b), where t ∈ T and b ∈ B(t). The set of all binding elements is
denoted by BE.

A marking is a multi-set over TE and a step is a non-empty and finite multi-set
over BE. The sets of all markings and steps are denoted asM and Y. Let M(p) denote
the marking of a place p in the marking M . A binding element is enabled in a marking
M iff the following property is satisfied: ∀p ∈ P :

∑
(t,b) E(p, t) < b >≤ M(p).

When a binding element (t, b) is enabled in the marking M1, which is denoted by
M1[(t, b)〉, the transition t may be activated and the marking may be changed from M1

to M2. We write this change as M1[(t, b)〉M2. When a step Y is enabled in the marking
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M :∀p ∈ P :
∑

(t,b)∈Y E(p, t) < b >≤ M(p). Similarly, when a step Y is enabled to
change the marking from M1 to M2, then the change is denoted as M1[Y 〉M2.

3 Modeling TCG-based Secure Systems with CPN

A TCG-based secure system builds the trust chain from the TPM up to the application
layer. As shown in Figure 1, the upper layer applications send requests to the secure
system via the interfaces provided by the secure system, and the secure system han-
dles these requests and provides the corresponding security services to the applications,
such as TPM based sealed storage, setting up secure execution environment based on
late launch. The secure system serving as the security foundation for the upper layer
applications, can present itself in various forms, e.g., virtual machine monitor, secure
kernel, and operating systems. A formal study on the correctness of the secure system
can provide definite confidence on the prescribed security functionalities promised by
this foundation. In this section, we will model the mechanisms in TCG-based secure
system with CPN.

Application Layer

Security

Request

Security

Service

Application Layer

Secure System

RAM/DISK TPMCPU

TXT/SVM

Fig. 1. TCG-based Secure Systems

The security properties of a computer system are mostly reflected by its behaviors,
that is how the system behaviors handle specific information and whether they are in
compliance with some given specifications. Computer systems usually deal with two
types of information from the logical point of view: the data and program code, all of
which physically exist in the form of data on specific storage devices; from the phys-
ical existence point of view, all data are located in RAM, DISK, CPU registers, TPM
registers and other storage units. The operations that may change the states of data on
computers are as follows: write, read, system reset, CPU computing.

Isolation is the basic method for information protection in systems. For example, the
virtual machine monitor isolates different domains and protects the processes running
in a domain from attacks from another domain. For data protection, some privileged
tags are usually employed to represent its protected states, thus restricting access to
the protected data. In the system level, these privileged tags are directly bound with
the locations of storage units. The CPN is capable of depicting the behaviors of secure
systems and reasoning about their properties.
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Focusing on the internal mechanisms of TCG-based secure systems, we employ the
Constrained by the System Interface Adversary model ( CSI ADVERSARY model)
[14] for modeling and analyzing secure systems. All the attacks on the secure system
should only be conducted by invoking the interfaces provided by the secure system, and
there should be no other approaches for attacking or manipulating the secure system.
For example, an attacker who wants to modify some specified information in the se-
cure system, can only operate by invoking the system interfaces. It is also possible to
conduct injection, interception and replay attacks on the secure system, and all these
attacks are assumed to take place based on the operations on its open APIs. With this
adversary model, the security property analysis on the secure system can concentrate
on the system behaviors.

With CPN, we try to make our model expressive enough to depict the main char-
acteristics of the system, and reason with enough semantic support. Meanwhile, we
try to keep the system model at a reasonable level of abstraction without dealing with
too much lower level details. With the hierarchy representation capability of CPN, we
will first give a high level model and then refine the elements in the model to more
fine-grained models. We assume that some basic operations in a system are correct or
verified in advance, such as read and write operations in the system, TPM operations
like TPM extend, DMA operations etc. However, these lower level operations can still
be further studied with CPN or other formal methods.

3.1 Basic Model

The formal analysis on the secure system concerns whether the data and process related
behaviors in the system are in compliance with the given specifications. The TCG-
based secure system can be modeled as a Colored Petri Net: (Σ, P, T , A,N , C,G,
E, M0). We use colored tokens and places in CPN to denote the states of data and
processes in the secure system, and the operations on data and processes can be denoted
as transitions in CPN. The place sets denote the major state categories of data and
processes, and color sets denote the types of data and processes in these categories. The
links from actions to states and states to actions are denoted by arcs. The required states
of processes and data for enabling an action, and the states of processes and states after
the action finishes can be modeled as an arc expressions. The constraints on system
behaviors can be modeled as the guard function on transitions.

Data is the most important concept in secure systems, and the target objects of all
operations in the system can be considered as data. From the perspective of security
objectives, data expression e ∈ Data can be denoted as following types:

Data = {Num, K, K−1, Sig{e}, EncK{e}, SymencK{e},H(e), P rog,
Bool, Rec, Loc,NULL}

Num stands for numbers. K and K−1 stand for a public/private key pair, and K−1

is the inverse of key K. Sig{e} is the value of the data e signed by private key K.
EncK{e} is the value of date e encrypted with public key K. SymencK{e} is the
value of date e encrypted with symmetric key K (in this case, K == K−1). H(e)
is the hash value of date. Prog stands for program in the form of data. Bool stands
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for data of boolean type, and Bool = {true, false}. REC stands for data of record
type, which is used to record the states of objects. For example, the record of a data
expression e can be denoted as {H(e), SigAIK−1{H(e)}}. We use r to denote a record
instance. NULL is a special notation standing for no data.

Loc is the storage location of data, which can be denoted by two factors: the loca-
tion type and the location address. We consider the following types of physical storage
location on computer: RAM, Disk, TPM static registers and dynamic registers, CPU
registers. We use the following location types LocType= {RAM,Disk, TPM.spcr,
TPM.dpcr, CPU.reg} to denote the types of the above storage locations. The location
address of storage can be denoted by two numbers: LocAddr → Num×Num, where
the former is the start address and the latter is the end address: (st, ed). Then we have
Loc → LocType× LocAddr.

If ∃(st1, ed1), (st2, ed2) : st1 ≤ st2
∧

ed1 ≥ ed2 then we say (st1, ed1) is located
in the address of (st2, ed2), which is denoted as (st1, ed1) ⊆ (st2, ed2). We use l to
denote a location instance. When a location l1 physically exists in the area of another
address l2, we say l1 ⊆ l2. That is : ∃l1, l2 : l2.st ≤ l1.st

∧
l2.ed ≥ l1.ed⇒ l1 ⊆ l2.

Process is an important runtime concept in secure systems, and it is denoted as
Proc → Prog ×Next× Parain × Paraout, where Next : {progi|progi ∈ Prog},
Parain : Data, Paraout : Data.

In the following discussions, we will use pro to denote a variable or instance of
process type, e for a variable or instance of data type, con for a variable or instance of
boolean type.

system_reset_

app_request_

message

system_reset_

request_message

message

system_stop
HS

data_manage process_manage

HS

app_response_

message
Secure System

System_boot

_request

Fig. 2. Overview of the CPN model for a TCG-based Secure System

A higher level of the CPN model of a TCG-based secure system is shown as Fig-
ure 2. The secure system commonly deals with the following events: accept and handle
the data and process management requests from the upper layer applications; return the
service or processing results to requesters; handle the system boot/reboot/shutdown re-
quests. We consider the system boot and reboot as parts of the secure system because
they can change the states of data and process in a system. The service requests from
the upper layer applications have two types: one is the data protection request which
is about security operations on specified data, such as data encryption or decryption,
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signing data with TPM, lock or unlock specified data area; the other type is the pro-
cess handling request, such as the request for creating a secure execution environment
for the specified program, or for terminating a specific process. These two types of
requests are corresponding to the two places in Figure 2: app request message and
app response message, respectively.

The secure system provides the above services by combining two mechanisms: the
data management and the process management. The data manage and process manage
transitions in Figure 2 are corresponding to these two mechanisms.

The secure system based on trusted computing supports two types of system boot:
secure boot and authenticated boot. Secure boot guarantees the system will boot into
a secure state, while authenticated boot will record all the boot information to support
attestation on the boot process. The system reboot and boot requests are corresponding
to the places system boot and system reset. The place system stop stands for the
system shutdown.

I/O operation is an important factor in real systems. However, in most of the ex-
isting studies [34, 33], the I/O operations are considered as being untrusted in secure
systems. For example, the DMA operations are considered to be unsafe for secure sys-
tems. Usually the asynchronous I/O should be disabled in privileged mode of the secure
system by disabling all interrupts, and it is in fact the case for existing secure system
implementations. When synchronous I/O are involved, the driver of the device should
also be considered as part of the secure system, like the drivers for TPM security chip.

For simplicity, Figure 2 does not specify the arc expression, as the later sections will
further refine these transitions.

3.2 Process Management

One of the key mechanisms in secure systems is process management, by which the se-
cure system provides security services to the upper layer applications. From a structural
perspective, the secure system usually consists of different programs or modules. From
the runtime point of view, most of the existing secure systems are designed to execute
in a single thread mode, e.g., Flicker[34] and TrustVisor[33]. In this paper, we also first
consider the secure system executing in single thread mode. However, as CPN can nat-
urally reason on the concurrency in systems, we may also discuss some concurrency
features of the secure system in the future, and thus reflecting multi-cores for secure
systems.

We consider the execution of the secure system in two categories: one is the situation
when the system is operating on some business logics, like the computational tasks,
and the operation does not change the security state of the secure system; The other
is when security operations change the security state of the secure system, such as
data encryption and decryption, late launch and seal storage, etc. For the first kind of
execution states, we record the system state as proc ex. Figure 3 is the CPN model
for the process management mechanism in a TCG-based secure system. This model is
generated by refining the higher level model in Figure 2.

As mentioned above, the place proc ex stands for the executing state of the secure
system when no security operations are involved. The tokens in places app rq msg and
app rs msg denote the requests and responses between the secure system and upper
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(pro, e')

(pro, e')

n
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pro

pro

n+1

pro

pro

pro'

pro

data_mg

latelaunch

sys_rt

proc_sw

sys_bt

sys_ter

rec

sys_bt_rq

sys_rt_rq

app_rs_msg

app_rq_
msg

proc_ex

sys_st

Proc

Fig. 3. Process management

layer applications. The tokens in place sys rb rq and sys bt rq stand for the requests
on system reboot and boot, respectively. The token in place sys st stands for the number
of system shutdown. The token in sys st also indirectly reflects the number of system
boot, because during the execution of the secure system, the number of system boots is
always one more than the number of system shutdowns. The tokens in place rec stand
for the runtime records of objects in the secure system based on the TPM. Thus we get
the place set for the process management mechanism: P1 = {proc ex, app rq msg,
app rs msg, sys rb rq, sys bt rq,sys st, rec }.

In order to depict the tokens in these places, we introduce the following color sets:

C1 = { C1(sys st) = Num, C1(sys rt rq) = Bool, C1(rec) = Rec,
C1(sys bt rq) = Bool, C1(app rs msg) = Prog ×Data,
C1(app rq msg) = Prog ×Data, C1(proc ex) = Proc}

In the single-threaded secure system, the following operations can change the se-
curity state of the system: process/module switch, system boot, system termination,
system reset, late launch, data management. Thus we get the transition set for the CPN
model of process management mechanism:

T1 ={ sys bt, proc sw, sys ter, sys rb, latelaunch, data mg }
The arcs set and arc expression function are shown in the Figure 3. Specially, there

is a constraint on the arc expressions between the place proc ex and the transition
process switch:

E1(proc ex, proc sw).Next == E1(proc sw, proc ex).P rog

which means the order constraint of process switch.
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Tokens in place sys rt rq and place sys bt rq denote the requests corresponding
to system reboot and boot respectively, and they are of the type Bool. Only when the
value of the token is true, the corresponding transition can be enabled. We use the
guard function to express this constraint:

G1(sys rt) = (con == true), G1(sys bt) = (con == true)

When the system reboot request is true or the system boot is true, the corresponding
transition should be enabled under any condition. That is :

∀(sys bt, b) ∈ BE, ∀M1 ∈M : (con == false)⇒ @M2 ∈M : M1[(sys bt, b)〉M2

∀(sys rt, b) ∈ BE, ∀M1 ∈M : (con == false) ⇒ @M2 ∈M : M1[(sys rt, b)〉M2

which means: in any condition, if a condition con is true and the transitions sys bt and
sys rt are enabled, then they must occur, i.e., the boot or reboot action must be allowed.
sys bt and sys rt are enabled means that beside the condition is true, the system also
requests these actions.

The secure system consists of different programs and modules, and it is common
that program/module switch happens during the system execution. The CPN model for
process management should specially depicts the process switch. The process switch
happens in two situations: when a module terminates its execution and starts another
module/program; the executing module jumps to another module by invoking instruc-
tions like “JMP”. The process switch can only happen when the executing process has at
least one next program to execute, and this is denoted as a guard function on transition

proc sw: G1(proc sw) = (pro.Next 6= NULL)

Considering the secure system as a single-threaded system, the CPN model in Fig-
ure 3 only depicts the process switch while without taking into account the context
switch. If the context switch is considered, it is natural to refine the transition proc sw
into two parts: with and without context switch.

System reboot may change the security state of the secure system. For example,
in a remote attestation scenario, after the platform configurations are transferred to the
challenger, the system can immediately reset the system to boot into a compromised
system. The solution for this reboot is to introduce a boot counter which records the
number of system boots. Our CPN model depicts this mechanism with an alternative
solution: the sys st place holds the token whose color stands for the number of system
shutdowns.

The late launch mechanism is responsible for setting up a secure execution envi-
ronment for given program codes. The data management mechanism is based on the
hardware memory protection techniques to manage and protect the access to data. We
will model these two transitions in the following subsections.

3.3 Synchronous I/O

There are two types of I/O: synchronous and asynchronous. In the designs of existing se-
cure systems, interrupts are usually disabled in privileged mode, thus the asynchronous
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I/O is not applicable for modeling secure systems. The I/O devices are usually accessed
in the synchronous way, such as the TPM security chip.

We will take the TPM as an example to depict the synchronous I/O operations
in the secure system. Let’s consider the TPM PCR read operation in TPM. When
place proc ex has a token pro1 = (program1, {TPM PCR read}, para1, para2);
then after the transition proc sw occurs, the token in proc ex is replaced by pro2 =
( TPM PCR read, {program1}, para2, para3); when TPM PCR read finishes
execution, the transition proc sw occurs again and the token in proc ex is replaced
by pro3 = (program1, {program2}, para3, para4), where program2 is the next
process for program1.

3.4 Data Management

Restriction on data access is an important mechanism to guarantee the integrity of pro-
gram code and data. By modeling the data access control, we may analyze the data
protection mechanism in secure systems. Secure systems usually use tags to identify
the access privileges on specific data areas, and restrict applications from accessing to
these areas. In this subsection, we model the data protection mechanism by refining
the transition data mg in Figure 3. Consequently, Figure 4 is the CPN model for data
management mechanism in the secure system.

Proc*Data

Proc*Data

Data_Write_RQ

Data_Lock_RQ

Data_Read_RQ

Locker

Locker

(pro,l,e)

(pro,con)

(pro,e)

(pro,l)

(pro.rq,l)

(pro,rq,l) lock

locklock'
lock

lock
lock'

write

readlock

unlock w_rs

r_rs

w_rq

r_rq

lock_rq lk unlk

Fig. 4. Data management

As mentioned in section 3.1, we consider the following storage locations for data
LocType= {RAM,Disk, TPM.spcr, TPM.dpcr, CPU.reg}. There are two kinds
of operations: read and write. We consider two types of access control restrictions on
data: read lock and write lock, which restrict the corresponding actions on the target
data. Then we have two operations on these restrictions respectively: lock and unlock.
So, we have the following color sets to model the data management mechanism:

Lock Type = {r lk, w lk}; Lock OP = {lk, unlk};
Locker = Loc× Lock Type× Prog; Data Read RQ = Proc× Loc;

Data Write RQ = Proc× Loc×Data;
Data Lock RQ = Loc× Lock Type× Lock OP ;
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In the following discussions, we use the following variables : rq : Data Lock RQ;
l : Loc; lock : Locker, where Loc → LocType× LocAddr.

We have the place set P2 ={r rq, w rq, lk rq, r rq, w rs, ld, unlk }. Tokens in
r rq,w rq and lk rq stand for the corresponding action requests. Tokens in r rs and
w rs stand for the results of read and write actions. Tokens in lk, unlk stand for the
locked and unlocked states of storage locations.

We have the color set:

C2 = { C2(r rw) = Data Read RQ, C2(w rq) = Data Write RQ,
C2(lk rq, ) = Data Lock RQ, C2(r rs) = Proc×Data, C2(w rs) =

Proc×Data, C2(lk) = Locker,C2(unlk) = Locker}

and the transition set:

T2 = {lock, unlock, read, write}

The arc set and the arcs expression function are shown in Figure 4.
We assume that all the storage locations are unlocked at the initial time of the sys-

tem, except some privileged locations, such as the boot address of the system, and the
TPM dynamic registers. When the place unlk holds all the tokens, it means that all
storage locations are unlocked.

The data can only be accessed when it is unlocked. We use the guard function on
read and write transition to depict the model restrictions as follows:

G2(read) =
(∃(pro1× l1) ∈ Type(M(r rq))

∧ ∃(l2× r lk× prog2) ∈ Type(M(unlk) : l1 ⊆ l2)

G2(write) =
(∃(pro1× l1) ∈ Type(M(w rq))

∧ ∃(l2×r lk×prog2) ∈ Type(M(unlk) : l1 ⊆ l2)

Only when the target location is unlocked, the system may carry out read or write op-
eration. This property of CPN model for data protection mechanism in secure systems
can be expressed as follows:

∀(read, b) ∈ BE, ∀M ∈M : b(l) ⊆ b(locker).Loc
⇒ @M ′ ∈M : M [(read, b)〉M ′

∀(write, b) ∈ BE, ∀M ∈M : b(l) ⊆ b(locker).Loc
⇒ @M ′ ∈M : M [(write, b)〉M ′

It is straightforward to employ the above model to depict security related data opera-
tions, e.g., the PCR operations in TPM. These operations can be expressed by the read
and write model. For example, the PCR read can directly expressed by the read opera-
tion, while the PCR reset operation by privileged instructions can be expressed as write
operation on specific registers.
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3.5 Late Launch

The late launch mechanism can set up a secure execution environment for the given
application. We will refine the late launch transition in Figure 3 to model the late launch
mechanism. The CPN model of late launch mechanism is shown in Figure 5.

When an application requests the secure system to set up a secure execution en-
vironment for the given program code, the secure system stores the context and then
invokes the privileged CPU instruction to launch the secure environment and records
related information; then the given program code executes in the secure environment,
and after finishing the execution, it returns the control to the secure system; Then the
secure system records related information and then restores the context to resume exe-
cution.

ProcRec

Proc*Data

Ctx

Proc*Prog

n'r pro

pro

ctx

ctx

(pro,e)

n'r

(pro,app)

SEM_quit

SEM_setup

context

lt_lh_res

record

lt_lh_req

app_sec_exe

Fig. 5. Late Launch

We have the places set:

P3 = {lt lh rq, context, record, lt lh res, app sec exe}

Tokens in place lt lh rq stand for the late launch request from the upper layer applica-
tions. Tokens in place lt lh res stand for the state after late launch finishes its execution.
Tokens in place app sec exe stand for the execution state of the given program code
in secure execution environment. As only one thread is allowed, we may restrict the
number of tokens in app sec exe to be no more than 1.

We add the following color set to depict the tokens in the late launch model (Ctx
stands for Context):

Ctx = Prog ×Next; ctx : Ctx; C3 = {C3(lt lh req) = Proc× Prog,
C3(context) = Ctx, C3(lt lh res) = Proc×Data, C3(app sec exe) = Proc,

C3(record) = Rec}

The transition set is T3 = {SEM setup, SEM quit}, where SEM setup and
SEM quit stand for the set up and quit of secure execution environment. The arcs set
and arc expression function are shown as in Figure 5.

13



4 Case Studies

In this section, we will employ the above models to study the memory protection mech-
anism in TrustVisor [33] and remote attestation based on dynamic root of trust [19, 3],
respectively.

4.1 Memory Protection in TrustVisor

TrustVisor is a special purpose secure hypervisor. It provides fine-grained protection
mechanism to guarantee the integrity of program code and data for applications, un-
der the assumption that the operating system may be malicious or tampered. TrustVisor
employs the following mechanisms to provide stronger protection with acceptable over-
head: hardware based virtualization [20], late launch [19, 3], DMA protection [4] , 2D
page walking [8] and virtualized TPM [7]. With these mechanisms, TrustVisor stands to
setting up a secure execution environment to support the execution of the given program
codes PAL specified by the application APP .

In TrustVisor, a system state has three modes: host mode, legacy guest mode and
secure guest mode. In host mode, TrustVisor handles the control and it can access any
location on the computer; in legacy guest mode, the operating system or the applications
are executing, while the TrustVisor and the PAL of the APP are protected; in secure
guest mode, the PAL is executing in the secure execution environment, and all other
parts of the system are protected. The states of objects in TrustVisor for these three
modes are shown in Table 1.

Table 1. The protection status of objects in TrustVisor based system

PPPPPPPMode
Object

TrustVisor Untrusted Legacy OS APP PAL

host mode executing accessible accessible accessible
legacy guest mode protected executing executing protected
secure guest mode protected protected protected executing

We use the data management model presented in Section 3.4 to study the memory
protection mechanism in TrustVisor. We can map the accessible and protected states to
the locked and unlocked states in the model. The involved operations in the process of
the system mode change can be considered as actions of lock, unlock, read and write,
respectively. With these mappings, we are entitled to model the memory protection
mechanism in TrustVisor as a CPN and analyze its properties accordingly. We consider
an application app, which sends a request to TrustVisor for setting up a secure execution
environment for the given program codes pal. To see whether the memory protection
mechanism is designed correctly, the CPN model of the memory protection mechanism
can be verified according to the following properties (TV stands for TrustVisor):

1. Host mode:
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∀(read, b) ∈ BE, ∀M ∈M : b(pro).P rog == TV
⇒ @M ′ ∈M : M [(read, b)〉M ′

∀(write, b) ∈ BE, ∀M ∈M : b(pro).P rog == TV
⇒ @M ′ ∈M : M [(write, b)〉M ′

2. Legacy guest mode:
∀(read, b) ∈ BE, ∀M ∈M : b(pro).P rog == OS

∨
b(pro).P rog == app∧

(b(l) ⊆ TV
∨

b(l) ⊆ pal) ⇒ @M ′ ∈M : M [(read, b)〉M ′

∀(write, b) ∈ BE, ∀M ∈M : b(pro).P rog == OS
∨

b(pro).P rog == app∧
(b(l) ⊆ TV

∨
b(l) ⊆ pal) ⇒ @M ′ ∈M : M [(write, b)〉M ′

3. Secure guest mode:
∀(read, b) ∈ BE, ∀M ∈ M : b(pro).P rog == pal

∧
(b(l) ⊆ TV

∨
b(l) ⊆

OS
∨

b(l) ⊆ app) ⇒ @M ′ ∈M : M [(read, b)〉M ′

∀(write, b) ∈ BE, ∀M ∈ M : b(pro).P rog == pal
∧

(b(l) ⊆ TV
∨

b(l) ⊆
OS

∨
b(l) ⊆ app) ⇒ @M ′ ∈M : M [(write, b)〉M ′

4.2 Remote Attestation based on Dynamic Root of Trust

Remote attestation is a fundamental issue in trusted computing, and has attracted con-
siderable attention [10, 15–17, 21, 36, 39–41]. In an open and dynamic environment,
remote attestation provides a reliable way to establish trust among different platforms
in mutually distrusted domains. The dynamic root of trust based remote attestation has
been studied in recent years [3, 15, 19, 33, 34]. It is important to validate the correctness
of these security mechanisms. Next, we will extend our above models to study remote
attestation based on dynamic root of trust.

A typical dynamic root of trust based remote attestation scenario is as follows: the
application app runs on an open platform P , and a challenger CH requests to attest
the execution of specific program codes pal. The remote attestation protocol runs as
follows: first the challenger CH sends a request with a random nonce non, which is
used to eliminate replay attack; when app is going to execute the pal, app will requests
the secure system to set up a secure execution environment for the pal with late launch;
when the secure system sets up the environment for pal, the states of related information
will be recorded, including the environment, the pal and its inputs; then pal executes in
the secure environment; after pal finishes its execution, the secure system will record
the outputs of pal; the system resumes its execution and sends all records to the CH .

The CPN model for remote attestation based on dynamic root of trust is shown
in Figure 6. This model is based on the model of late launch in Section 3.5. The
newly added elements are P4 = {RA rq, nonce, RA res, known − good record,
RA result, exe finished }, which are remote attestation request, random number,
response of remote attestation from challenger, known-good measurements, result of
remote attestation, respectively. The newly added transitions T4 = {RA challenge,
RA response, verify} denote remote attestation request from CH , remote attestation
response from the target platform, and the verification on the returned records, respec-
tively.
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Fig. 6. Remote attestation based on dynamic root of trust

5 Related Work

In this section, we will briefly review the related work in three areas: the TCG-based
secure systems, CPN based formal studies (especially in security related applications),
formal methods for TCG-based security mechanisms/systems.

5.1 Secure Systems based on Trusted Computing

Since the introduction of TCG specifications in 1999, many secure systems have been
built around trusted computing. Terra [13] introduced a TPM based trusted virtual ma-
chine architecture geared towards both open and closed domains, thus supporting both
legacy systems and security sensitive computations on the same hardware platform.
The Integrity Measurement Architecture (IMA) [40] was essentially a TPM based in-
tegrity measurement and report mechanism in Linux. OSLO [29] establishes a secure
boot mechanism with the assistance of the late launch technique, and Flicker [34] lever-
ages on late launch to set up a secure execution environment for given program codes.
With the debug facilities on CPU, [15] presents a fine-grained attestation scheme for
legacy binary program at the function level. TrustVisor [33] is implemented as a special
purpose security hypervisor with acceptable performance overhead.

With the increasing emergence of trusted computing based systems and security
mechanisms, formal studies on the design and implementation are essential in guaran-
teeing the correctness of these security foundations.

5.2 CPN based Formal Studies

Petri Nets have been widely used to model, analyze and validate various security mech-
anisms and systems, such as the security requirements [2], mandatory access control
(MAC) [48, 45, 49, 25], discretional access control (DAC) [31], and role based access
control (RBAC) [37].
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With the features of Petri Nets and the support of advanced programming languages,
Colored Petri Nets is a good tool to model, analyze and validate complex systems [12].
For example, in BETA[32], an object-oriented language supporting distributed program
execution, CPN is used to model and analyze the protocol of remote object invoca-
tion[26]; Nokia research center has conducted a series of formal studies on mobile
computing and network related systems. In security related applications, CPN were
also extensively used to study the security properties of systems. For instance, CPN
and its tools have been used to study access control models, such as RBAC [37], Chi-
nese Wall policy [48], and UCON [28]. CPN are also utilized to analyze and validate
security models, such as the Bell-LaPadula model [31], the Biba model[49]. Shin [42]
introduced an extended role based access control mechanism for a trusted operating
system: E-RBAC, and conducted a formal study on E-RBAC with CPN. [27] makes use
of CPN to model and analyze the Stateful Reference Monitor. It is now a proven fact
that CPN is a wieldable tool for modeling and analyzing complex systems (including
security related systems).

5.3 Formal Verification on Trusted Computing

There exist some formal studies on TCG specifications and TCG based systems. Among
many others, below are some examples. Bruschi et al. [9] conducted a formal study on
the authorization protocol in TPM, and analyze the vulnerabilities in the protocol by
model checking. [38] presented a test based method to verify the compliance between
TPM and the TCG specifications. Zhang et al. [47] analyzed the trusted network con-
nect (TNC) protocols within the universally composable (UC) framework. Gürgens et
al. [18] conducted a systematical security analysis of a large part of the TCG specifica-
tions with a formal automata model based on asynchronous product automata APA and
a finite state verification tool SHVT. Predict logic was used to model and analyze the
bootstrapping trust [11]. Based on the Protocol Composition Logic (PCL), Logic of Se-
cure System is employed to analyze the remote attestation schemes based on static root
of trust and dynamic root of trust [6]. While some progresses have been made, many
of the existing trusted computing based systems and security mechanisms still require
further formal study on their correctness, such as the IMA, Flicker, and TrustVisor. As
such, the proposal in this paper is dedicated to contribute along this line of work.

6 Conclusion

The trusted computing technology by TCG is proposed as a countermeasure to software
attacks in an open environment. In practice, a (secure) system built upon the TPM must
guarantee correctness. However, existing work still falls short of formal methods that
model, analyze, and validate the correctness of TCG based systems. Aimed at contribut-
ing along this line of work, in this paper we proposed CPNs to be an appropriate tool,
because of its inherent advantages in the formal study of complex systems. In particu-
lar, we established CPN models for various mechanisms in a TCG based secure system:
process management, data management and late launch. With these models, we further
conducted case studies on the memory protection mechanism in TrustVisor and remote
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attestation based on dynamic root of trust, and the results demonstrate that these mod-
els are indeed capable of modeling real secure systems. We stress that our models can
serve as the foundation to support further formal analysis on the security properties of
TCG-based secure systems.

One of the future work is to simulate and analyze the properties of the derived CPN
models, with the help of the relevant CPN tools. In addition, we shall further model
TrustVisor to study its security properties based on its design. According to the recent
progress in system verification [30], we also plan to employ CPNs to conduct formal
study on the implementation of secure systems, e.g., Flicker.
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