
Security Model Oriented Attestation on Dynamically Reconfigurable
Component-Based Systems

Liang Gu, Guangdong Bai, Yao Guo , Xiangqun Chen, Hong Mei

Key Laboratory of High Confidence Software Technologies (Ministry of Education),
Institute of Software, School of EECS, Peking University. Beijing. China.

{guliang05, baigd08, yaoguo, cherry, meih}@sei.pku.edu.cn

Abstract—As more and more component-based systems
(CBS) run in the open and dynamic Internet, it is very
important to establish trust between clients and CBS. One
of the key mechanisms to establish trust among different
platforms in an open and dynamic environment is remote at-
testation, which allows a platform to vouch for its trust-related
characteristics to a remote challenger. This paper proposes a
novel attestation scheme for a dynamically reconfigurable CBS
to reliably prove whether its execution satisfies the specified
security model, by introducing a TPM-based attestation service
to dynamically monitor the execution of the CBS. As a case
study, we have applied the proposed scheme on OSGi systems
and implemented a prototype based on JVMTI for Felix.
The evaluation results show that the proposed scheme is both
effective and practical.

Keywords-Component-based systems; remote attestation;
trusted computing; security model; security policy;

I. INTRODUCTION

Thanks to the achievements from both academic and

industrial organizations in the past few years, Component-

Based Systems (CBS) has been widely applied in various

applications, including complex mission-critical systems.

With the rapid development of Internet, many dynamically

configurable CBS nowadays are deployed on open computer

platforms across heterogeneous domains or over the public

Internet, such as systems based on CORBA, .NET, J2EE

and Web Services. These dynamic CBS can be configured

dynamically and the components in CBS can be updated and

replaced at runtime. The security and privacy of its clients

greatly rely upon the sound operation of these systems, thus

the trustworthiness of the execution of dynamic CBS is

especially important.

In an open and dynamic environment, a client or user

often pays close attention to whether the computation results

of a software component in a dynamic CBS are of integrity,

or whether a specific dynamic CBS runs as expected. For

example, when an end user submits his personal information,

such as a password or a credit card number, he may require

that the corresponding process in the server-side CBS will

protect his information properly and no other unauthorized

processes are able to obtain it. Meanwhile, a system ad-

ministrator may want to check whether the execution of

a CBS runs as configured. Two aspects are concerned in

order to confirm that a dynamic CBS behaves according to

a given security model: What mechanisms are employed to
protect the execution of software components and CBS? How
to confirm that these employed mechanisms are correctly
enforced?

Many mechanisms have been proposed to enhance the

security of CBS [1–3]. However, it is difficult for the existing

security mechanisms to establish trust on dynamic CBS in an

open and dynamic environment such as the Internet, because

of the following reasons:

• First, the root of trust for these traditional security

mechanisms would be vulnerable if applied to dynamic

CBS. Existing security mechanisms for dynamic CBS

are mostly based on pure software. However, software

is vulnerable for attacks. Thus these security mecha-

nisms themselves may also suffer from attacks;

• Second, the complexity of dynamic CBS is ever in-

creasing and it may be comprised of third-party com-

ponents. The system behaviors may be unpredictable

and the management of these dynamic CBS becomes

more difficult. Furthermore, the vulnerabilities in a

component may compromise the whole CBS[1];

• Third, in open networks, the client and dynamic CBS

may run in heterogeneous and distributed environments

in mutually distrusted domains, thus the traditional

trust management mechanisms based on cryptographic

protocols [4, 5] are not adequate to establish trust

between clients and the dynamic CBS;

• Furthermore, a dynamic reconfigurable CBS [6] can

evolve because of component updates, runtime environ-

ment changes or users’ modifications. A CBS adminis-

trator may incidentally modify the CBS configuration

into a fault state at runtime. The runtime deployment

and update of components in CBS may also cause

anomalies in the system.

The Trusted Platform Module (TPM)[7] proposed by

the Trusted Computing Group (TCG) has received broad

interests from both academia and industry. TCG attestation

allows a challenging platform, usually referred to as a

challenger, to verify the configuration integrity of a remote

platform (i.e. an attester). Recent years have witnessed

2010 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-4272-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UIC-ATC.2010.70

299

various evolutions out of the basic TCG attestation in

many dimensions [8–14]. We use TCG attestation [7] as a

building block to attest the security model for dynamic CBS

execution.

In this paper, we propose a novel approach to attest

whether the execution of a dynamic CBS is in compliance

with the given security model of a challenger. A security

model usually depicts the higher level specification which

restricts the execution of systems. If a system satisfies a

specific security model, it means that the system is at a

specific security level. Security models are usually expressed

in security policies in systems and the execution of a

CBS is usually constrained by these policies. In order to

prove whether the execution of a dynamic CBS is at a

specific security level, we introduce an attestation service,

which leverages the features of TPM, to monitor and record

the evidences for attesting the correct enforcement of the

security policy.

Facing the challenges for establishing trust on the dynamic

CBS in open environments, our scheme employs several

techniques to provide reliable attestation on their execu-

tions. For parties from mutually distrusted domains in open

networks, our scheme employs TPM as the strong root of

trust for attesting dynamic CBS in open environments. With

these runtime records, a challenger can attest the execution

of dynamic CBS in two steps: first, it confirms that the

security policy is correctly enforced by the runtime security

mechanism; second, it confirms that the enforced security

policy of CBS is in compliance with the expected security

model.

This paper makes the following main contributions:

• To the best of our knowledge, this is the first work for

applying the TCG-based attestation techniques specif-

ically on dynamically reconfigurable component-based

systems to attest the security model of CBS execution.

• With TPM, our scheme has a strong root of trust for

trust evaluation on a dynamic CBS. With our scheme, it

is reliable to conclude whether a software component or

a CBS executes as expected according to the specified

security model.

• The implementation and evaluation of the prototype

are studied in the case study and it demonstrates our

scheme in practical usage.

The rest of the paper is organized as follows: Section

II introduces the background, including two motivating

scenarios, the TCG attestation and security model. Section

III presents our solution for attesting CBS. Section IV

introduces the case study and evaluation of our scheme:

attestation on OSGi system. Section V introduces related

work and Section VI concludes the paper.

II. BACKGROUND

A. Motivating Scenarios

We will first introduce two typical scenarios for our

scheme.

Online Shopping System: Many online shopping sys-

tems are implemented based on J2EE. At the checking

out stage, it usually involves submitting a user’s personal

information. The consumer can feel more comfortable, if

the system can attest that it does not reveal any personal

information to untrusted processes in the system. With the

help of our attestation scheme, online consumers can request

an attestation on all components related to the process, to

ensure that his personal information is protected as expected.

CBS Administration: The administrator of a CBS may

rely on runtime monitoring and reporting mechanisms to

check whether the system executions as expected. However,

in a dynamic and open environment, the monitoring and

reporting mechanisms require a strong root of trust to guar-

antee their trustworthiness. With the support of attestation,

the administrator can evaluate the trustworthiness state of

the CBS reliably, and carry out the administration activities

more reliably.

B. Remote Attestation

Existing remote attestation schemes mostly come into

three categories: integrity attestation [8, 10, 15], property-

based attestation[11] and semantic attestation[9, 12, 13].

Integrity attestation is based on TCG attestation and mostly

tries to attest the configuration integrity of platforms. In

order to protect the configuration information of the attested

platform, property-based attestation was proposed to attest

platforms by checking the specified properties. The property

is certificated via checking the configuration state by a

trusted third party. The semantic attestation is used for

proving some higher level properties of the target system

or platform.

C. Security Model and Security Policy

A security model is a high level specification or an

abstract machine description of what the system does [16]. A

security model defines some high level rules for information

flow in the system. For information flow security, confiden-

tiality and integrity are the most concerned factors [17–19].

The security level of a system can be obtained by checking

whether the information flow in the system satisfies certain

security models. In practical usage, security policies convey

specific security models. A security policy is a set of rules

governing subjects and objects in system, and it specifically

restricts the behaviors of subjects (processes and users) in

system [20].

300

III. ATTESTATION ON DYNAMICALLY RECONFIGURABLE

COMPONENT-BASED SYSTEMS

Challengers may expect that the target CBS behaves in a

specific manner. These kinds of expectations on a CBS usu-

ally reflect some higher level specification on it. Specifically,

the security policy for CBS at runtime scpecifies such kinds

of expectation. We will reduce the problem of how to attest a

CBS to the problem of how to attest whether the execution of

the CBS satisfies a specified security model. Our scheme for

attestation on a CBS needs to attest two objectives: Whether

the security policy enforcement mechanism on the specified

CBS is correctly enforced; Whether the enforced security

policy satisfies the specified security model.

Attestation on CBS involves three phases. In the prepa-

ration phase, the attestation objects are identified according

to the specific security model and other application require-

ments. At runtime, AS records the execution of relevant

parts in the CBS, as well as the security enforcement

PE . At verification time, CH can check these proofs to

attest whether the expectation is satisfied, i.e., whether the

execution of a CBS is in compliance with a given security

model.

A. Scheme Overview

1) Scheme Architecture: The architecture of our scheme

is shown in Figure 1. Two parties are involved: the chal-

lenger CH and the platform Hr which hosts the CBS.

The challenger can be a remote user of the CBS, a local

system administrator, or even a process. The platform Hr

is supposed to be equipped with a TPM that serves as

the root of trust. The security policy of CBS is enforced

by the policy enforcement PE in its framework layer. PE
consists of a policy decision point, policy enforcement point

and policy records. We introduce an attestation service

AS with corresponding attestation policy in the runtime

environment layer for CBS. The AS employs the TPM

to dynamically monitor and record the runtime execution

of CBS and the function of PE . In order to support the

secure domain for runtime environment layer, the platform

layer may employ trusted virtual machine [15] to provide

an isolated environment. The communications between CH
and AS can be protected by cryptographic protocols.

2) Attestation Service: The attestation service AS is

introduced in the foundational layer in the runtime environ-

ment of CBS. AS should be able to monitor the execution

of CBS and the security policy enforcement mechanism

PE . According to the specific security model and other

attestation requirements, all objects required to be attested

are identified as an attestation objects list AOL. AS is

responsible for recording the states and behaviors of these

attestation objects. After all required proofs for attestation

are collected, AS delivers them to the challenger.

The attestation policy enables the attestation service to

support flexible attestation according to different application

requirements. For example, when parts of the CBS are

concerned in a specific attestation, only these related objects

are included in the AOL. The attestation policy can be

configured before the execution of CBS and reconfigured

according to challengers’ requests at runtime. Above all, the

attestation policy tells the attestation service about which

objects are required to be monitored, and how to monitor

them for some special applications.

B. Security Model Oriented Attestation

At runtime, a security policy instance is enforced to

restrict the behaviors of CBS. If a security policy is in

compliance with a security model, the security policy can be

viewed as an instance of the security model. In order to attest

the security model of the specified CBS, the challenger needs

to check whether the enforced security policy satisfies the

security model and whether the security policy is correctly

enforced.

Compliance between Security Policy and Security
Model : The policy change behavior can be denoted as:

Capti+1 = fcdo(s, Capti, u, cc). Capti+1 and Capti are

security policy instances and they are supposed to be in

compliance with the expected security model. A security

model depicts some properties on the capability sets. Thus,

the compliance checking between the security model and

the policy is to check whether the capability set holds these

properties.

For an enforced security policy instance, we may transfer

these access control rules into specified models, such as the

state machine model we just introduced. Then it is possible

to employ some automated tools to check whether the secu-

rity policy is in compliance with the specified security model

or whether the security policy has the specified security

property. In the past years, many techniques for property

verification on policies have been proposed [21–23]. With

the broad adoption of eXtensible Access Control Markup

Language(XACML), it becomes practical to transfer these

security policy instances into XACML, and then carry out a

formal verification on the XACML based policy according

to the specified security model.

Trusted Policy Change Behaviors: In a CBS, the se-

curity policy can be dynamically reconfigured at runtime,

by updating components or reflective components. So the

enforced policy can have many different versions during the

execution of CBS. All these different versions of security

policy are required to be recorded, in order to attest the

policy change behavior which transfers the system state from

Capti to Capti+1.

Trusted Enforcement: The policy enforcement mecha-

nisms should be attested to make sure that these recorded

policies are correctly enforced at runtime. The AS monitors

these security mechanisms and records their states immedi-

ately before they execute.

301

���������	
 ���� ��
����� �

�	��	
�
�
�	��	
�
�

���������	
����� �	��	
�
��
�������
������

�	����	���
�

�	��	
�
� ���	����

�	����
�
�	�����
���	�
�

�	����
������	
��	�
�

�	���� ������	� ����

��
����
�
!��	
��
��

����
"�#���
�	���
�

���������	

$��!����#����
%�� ���������	

�	���

������	� �����

&�'�����	�������
�	���
�

Figure 1. The architecture for attesting Component-Based Systems

Trusted Behaviors for System State Change :
A system state change behavior is denoted as si+1 =
fdo(si, Capt, u, sc), where the si and si+1 are the system

states before and after the behavior. In order to attest that

the behavior is correctly executed, we need to attest that

state si and the commands sc are trusted. Meanwhile, the

identification of u should also be trusted. The trustworthiness

of Capt can be verified by the compliance checking.

C. Identify Attestation Objects

A straight way for attesting the whole CBS is to monitor

all executed objects. However, as the restrictions of a specific

security model, as well as different granularity requirements

on the target CBS, it is not necessary to monitor all objects

in the system. In our scheme, it involves a preparation

phase to identify attestation objects for runtime attestation.

In the preparation phase, all attestation objects involved

can be identified by analyzing the attestation requirements,

including the given security model and expected security

policies, as well as granularity and scale requirements. The

task of identifying attestation objects can be carried out

by different parties, such as the challengers, the system

administrators and the program developers. We assume that

the preparation phase is carried out in a trusted domain or

by a trusted party.

1) Identify Attestation Objects according to Security
Model: When the behavior of a whole CBS is concerned,

the attestation objects should be identified according to the

given security model. With the guarantee that the security

policy is correctly enforced, it is not necessary to monitor

and record all subjects in the CBS. For example, in the BLP

model, the “no read up” property guarantees that lower level

entities can not read information from the subjects in the

higher level. The correct enforcement of BLP can guarantee

this property. So when the challenger needs to attest that

the information in the higher level components is not leaked

out to the lower level, the AS only has to monitor the

security enforcement mechanism and states of higher level

components, without recording the states and behaviors of

the lower level components. So the candidate components

to be monitored and recorded can be reduced according to

a specific security property. As a result, AS does not have

to attest all components in the system.

2) Update Attestation Object List: As dynamically re-

configurable CBS can evolve because of component updates

and security policy modifications, the attestation object list

should be updated according to the dynamic system changes.

When the security policies are modified at runtime, the set of

restricted objects may be changed and the attestation objects

should be updated accordingly. For newly added objects

in the security policy, they are added into the AOL; for

objects removed from the security policy, they should also

be removed from the AOL. The component management in

CBS may also cause security changes. When a component

is installed or uninstalled in the CBS, the target component

and its dependent objects should be added into or removed

from the AOL accordingly.

D. Attestation Procedure

The attestation procedure has two phases: measurement

and verification.

The measurement phase monitors and records the exe-

cution of CBS according to the attestation object list. AS
employs TPM to record the states of the related objects in

AOL. The configuration of the runtime environment layer

and platform layer should be recorded in order to attest

its initialization integrity. Then the state of security policy

should be recorded before and after each policy change event

in CBS. As discussed in the previous sections, AS needs

to monitor and record the following activities related with

objects in AOL: the life cycle management of components

in the CBS, the enforcement of security policy and the

302

restricted behaviors of specified components. At the end of

the measurement phase, TPM generates a signature on these

records with TPM Quote. Then the attestation service

returns the policy files and records to the challenger.

In the verification phase, the challenger verifies the run-

time measurements to check whether the CBS behaves as

expected in following steps:

1) The challenger checks the integrity of these records.

2) The challenger verifies the validation of AIK to attest

the TPM.

3) The challenger verifies the measurements according to

the TPM Quote.

4) Finally, the challenger checks whether the policy

instances are in compliance with specified security

model and returns the attestation result.

If any of the above steps fail, the verification procedure will

terminate with a failure result.

IV. CASE STUDY: ATTESTATION ON OSGI SYSTEMS

As a demonstration, we applied our scheme to support

trust establishment for OSGi [24] systems. The host platform

of the target OSGi system should be equipped with a TPM

which serves as the root of trust. As a case study, we use

Felix [25] to provide the OSGi framework.

An attestation service is introduced to monitor these

security enforcement mechanisms. We implement the at-

testation service based on the Java Virtual Machine Tool

Interface (JVMTI)[26]. The attestation service employs TPM

to record the states and events of concerned targets at two

levels: the JVM level, including Java Security Manager

and class loader; and the OSGi framework level, including

bundles and configuration files. The attestation policy is

designed to support fine-grained and flexible attestation.

Security Evaluation: The security of the platform layer

can be attested by its authenticated boot records. The secu-

rity of the attestation service can be attested by checking

the code integrity of Java Virtual Machine and attestation

service module. With TPM, the monitoring process and

measurements can be attested. After the initial stage, the

sandbox mechanism in Java Virtual Machine protects the

execution of Java program, so the trust chain can be built

from TPM to the execution of bundles.

Performance Evaluation: We implemented the proto-

type of our attestation service based on (JVMTI)[26], Felix

and TrouSerS-0.3.1. We evaluated the performance of our

attestation service by monitoring the execution of Felix.

The experiment was carried out on a Lenovo ThinkCenter

M8000t desktop with Intel Core 2 Quad E8400 @ 3GHz

and 2G Memory. The host system is Ubuntu with kernel

linux-2.6.28.14.

The Felix initialization is referred to the process for Felix

to boot into its control console, which is comprised of

resolving the system bundle, reloading any cached bundles,

and activating the system bundle. As shown in Table I,

we carried out two groups of experiments on framework

initialization: with and without the attestation service. For

each group, the number of installed bundles in the system

varies from 10 to 25. Each number in Table I is the average

time of the 20 runs of initialization. As it involves many

loading activities, the cost for monitoring the initialization

is non-negligible. However, as it only runs once for a typical

system, it is acceptable for a long running system in order

to support higher security guarantee.
V. RELATED WORK

Recent studies on remote attestation and security models

are already introduced in Section II. This section will briefly

introduce the related work of CBS security.

Recent studies on component security [1–3, 27] concern

mostly twofold: how to build secure components and secure

composite systems from components, and how to evaluate

component security properties. Security policy is widely

used to support the security of CBS[28]. Some studies

[3, 29] concern the policy validation. For the security

evaluation perspective, Muskens et al. [30] introduce an

integrity measurement mechanism in CBS, however, the

mechanism itself is fragile because of software attacks.

Certifying security of software components [31] should run

in a trusted domain and it can not solve the problem of trust

establishment between clients and dynamic CBS in mutual

distrust domains.

VI. CONCLUSION

In this paper, we propose a new attestation scheme to sup-

port trust establishment between clients and a dynamic CBS

in an open environment. Our scheme is capable of proving

whether its execution is in compliance with the specified

security model. With TPM, our scheme has a strong root

of trust to resist the software attacks. We implemented a

prototype of attestation service based on JVMTI for Felix.

The evaluation results show that our scheme is effective and

practical.

VII. ACKNOWLEDGEMENTS

This work is supported by the National Basic Research

Program of China (973) under Grant No. 2009CB320703,

the Science Fund for Creative Research Groups of

China under Grant No. 60821003, National Key S &

T Special Projects under Grant No. 2009ZX01039-001-

001 and the National High-Tech Research and Develop-

ment Plan of China under Grant No. 2007AA010304 and

No.2009AA01Z139, and National Natural Science Founda-

tion of China under Grant No. 60903178.

REFERENCES

[1] U. Lindqvist and E. Jonsson, “A map of security risks
associated with using cots,” Computer, vol. 31, no. 6, pp. 60–
66, 1998.

[2] K. M. Khan and J. Han, “Composing security-aware soft-
ware,” IEEE Software, vol. 19, no. 1, pp. 34–41, 2002.

303

Table I
THE INITIALIZATION TIME FOR FELIX (MILLISECOND, ms)

10 bundles 15 bundles 20 bundles 25 bundles 30 bundles
Without AS 220.6 232.2 265.2 300.4 346.2
With AS 474.8 586.8 729.6 868.1 1008.4

[3] L. Sun, G. Huang, Y. Sun, H. Song, and H. Mei, “An
approach for generation of j2ee access control configurations
from requirements specification,” in The Eighth International
Conference on Quality Software, pp. 87–96, Aug. 2008.

[4] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” in In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pp. 164–173, IEEE Computer
Society Press, 1996.

[5] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design
of a role-based trust-management framework,” in SP ’02:
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, (Washington, DC, USA), p. 114, IEEE Computer
Society, 2002.

[6] P. Hnetynka and F. Plasil, “Dynamic reconfiguration and ac-
cess to services in hierarchical component models,” in CBSE
(I. Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A.
Stafford, C. A. Szyperski, and K. C. Wallnau, eds.), vol. 4063
of Lecture Notes in Computer Science, pp. 352–359, Springer,
2006.

[7] Trusted Computing Group, “TPM main specification,” Main
Specification Version 1.2 rev. 85, Trusted Computing Group,
Feb. 2005.

[8] R. Sailer, X. Zhang, T. Jaeger, and L. v. Doorn, “Design
and implementation of a tcg-based integrity measurement
architecture,” in Proceedings of the 13th USENIX Security
Symposium, (San Diego, CA, USA), August, 2004.

[9] V. Haldar, D. Chandra, and M. Franz, “Semantic remote
attestation—a virtual machine directed approach to trusted
computing.,” in the Third virtual Machine Research and
Technology Symposium (VM ’04). USENIX., 2004.

[10] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-reduced
integrity measurement architecture,” in SACMAT ’06, (New
York, NY, USA), pp. 19–28, ACM Press, 2006.

[11] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi,
and C. Stüble, “A protocol for property-based attestation,” in
STC ’06, (New York, NY, USA), pp. 7–16, ACM Press, 2006.

[12] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei, “Remote
attestation on program execution,” in Proceedings of the
3rd ACM Workshop on Scalable Trusted Computing, STC
2008, with CCS’08, Alexandria, VA, USA, October 31, 2008,
pp. 11–20, ACM, 2008.

[13] L. Gu, X. Ding, R. H. Deng, Y. Zou, B. Xie, W. Shao, and
H. Mei, “Model-driven remote attestation: Attesting remote
system from behavioral aspect,” in International Symposioum
on Trusted Computing, pp. 2347–2353, IEEE Computer So-
ciety, 2008.

[14] L. Gu, Y. Cheng, X. Ding, R. H. Deng, Y. Guo, and W. Shao,
“Remote attestation on function execution,” in INTRUST
(L. Chen and M. Yung, eds.), vol. 6163 of Lecture Notes
in Computer Science, pp. 60–72, Springer, 2009.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra a virtual machine-based platform for trusted comput-
ing,” in SOSP 2003, (Bolton Landing, New York, USA),

October, 2003.

[16] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in Proc. IEEE Symposium on Security and Privacy,
pp. 11–20, 1982.

[17] D. E. Bell and L. J. L. Padula, “Secure computer sys-
tems: Mathematical foundations,” Tech. Rep. ESD-TR-73-
278, MITRE Corporation, 1973.

[18] K. J. Biba, “Integrity considerations for secure computer
systems,” MTR-3153, Rev. 1, The Mitre Corporation, 1977.

[19] D. C. Clark and D. R. Wilson, “A comparison of commer-
cial and military security policies,” in Proc. IEEE Symp.on
Security and Privacy, Washington DC, 1987.

[20] R. Boutaba and I. Aib, “Policy-based management: A his-
torical perspective,” J. Network Syst. Manage, vol. 15, no. 4,
pp. 447–480, 2007.

[21] V. Kolovski, J. A. Hendler, and B. Parsia, “Analyzing web
access control policies,” in WWW (C. L. Williamson, M. E.
Zurko, P. F. Patel-Schneider, and P. J. Shenoy, eds.), pp. 677–
686, ACM, 2007.

[22] Zhang, Ryan, and Guelev, “Evaluating access control policies
through model checking,” in ICISC: International Conference
on Information Security and Cryptology, LNCS, 2005.

[23] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz, “Verification and change-impact analysis of access-
control policies,” in ICSE, pp. 196–205, ACM, 2005.

[24] OSGi, “About the OSGi service platform.”
http://www.osgi.org/documents/collateral/
TechnicalWhitePaper2005osgi-sp-
overview.pdf.

[25] “Apache Felix.” http://felix.apache.org/site/
index.html.

[26] “Sun Microsystems, Inc. JVM Tool Interface (JVMTI).”
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

[27] D. Clarke, M. Richmond, and J. Noble, “Saving the world
from bad beans: deployment-time confinement checking,”
SIGPLAN Not., vol. 38, no. 11, pp. 374–387, 2003.

[28] N. Goeminne, G. D. Jans, F. D. Turck, B. Dhoedt, and
F. Gielen, “Service policy enhancements for the OSGi service
platform,” in CBSE, vol. 4063 of Lecture Notes in Computer
Science, pp. 238–253, Springer, 2006.

[29] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav, “When role
models have flaws: Static validation of enterprise security
policies,” in ICSE, pp. 478–488, IEEE Computer Society,
2007.

[30] J. Muskens and M. Chaudron, “Integrity management in
component based systems,” EUROMICRO Conference, vol. 0,
pp. 611–619, 2004.

[31] A. K. Ghosh and G. McGraw, “An approach for certifying
security in software components,” in Proc. 21st NIST-NCSC
National Information Systems Security Conference, pp. 42–
48, 1998.

304

