
SCOBA: Source Code Based Attestation on Custom
Software ∗

Liang Gu‡, Yao Guo‡
†

, Anbang Ruan§, Qingni Shen§,Hong Mei‡
‡Key Laboratory of High Confidence Software Technologies (Ministry of Education),

‡Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing, China
§School of Software and Microelectronics, Peking University, Beijing, China

‡{guliang05,yaoguo,meih}@sei.pku.edu.cn,§{ruanab, shenqn}@infosec.pku.edu.cn

ABSTRACT
Most existing attestation schemes deal with binaries and
typically require an exhaustive list of known-good measure-
ments beforehand in order to perform verification. However,
many programs nowadays are custom-built: the end user is
allowed to tailor, compile and build the source code into
various versions, or even build everything from scratch. As
a result, it is very difficult, if not impossible, for existing
schemes to attest the custom-built software with theoret-
ically unlimited number of valid binaries available. This
paper introduce SCOBA, a new Source COde Based Attes-
tation framework, to specifically deal with the attestation
on custom software. Instead of trying to obtain a know-
good measurement list, SCOBA focuses on the source code
and provides a trusted building process to attest the result-
ing binaries based on the source files and building configu-
ration. SCOBA introduces a trusted verifier to certify the
binary code of custom-build program according to its source
code and building configuration. For custom-built software
based on open-source distributions, we implemented a fully
automatic trusted building system prototype for SCOBA
based on GCC and TPM. As a case study, we also applied
SCOBA to Gentoo and its Portage, which is a source code
based package management system. Experimental results
show that remote attestation, one of the key TCG features,
can be made practically available to the free software com-
munity.

∗This work is supported by the National Basic Research Pro-
gram of China (973) under Grant No. 2009CB320703, the
Science Fund for Creative Research Groups of China under
Grant No. 60821003, National Key S & T Special Projects
under Grant No. 2009ZX01039-001-001 and the National
High-Tech Research and Development Plan of China under
Grant No. 2007AA010304 and No.2009AA01Z139, and Na-
tional Natural Science Foundation of China under Grant No.
60873238 and No. 60903178.†corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Au-
thentication, Invasive software; D.2.4 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering, and reengineering

General Terms
Security

Keywords
Remote attestation, custom software, trusted computing,
free software, property-based attestation

1. INTRODUCTION
Many IT systems nowadays are conducted on open com-

puter platforms across heterogeneous domains or over the
public Internet. Entities in such an open, distributed and
dynamic environment usually behave on their own behalf
and may not trust each other for mission-critical operations
or transactions. Remote attestation provides an important
way to establish trust on parties in an open network. In
Trusted Computing Group’s trusted computing standard
[23], remote attestation allows a challenging platform, usu-
ally referred to as a challenger, to verify the configuration in-
tegrity of a remote platform (i.e., an attester). Recent years
have witnessed various evolutions out of the basic TCG at-
testation in many dimensions, including IMA [21], program
semantics attestation [12], security policy enforcement [14],
property attestation [4, 19], BIND [22], remote attestation
on program execution [11], and so on.

Most of the existing remote attestation schemes are based
on the integrity measurement of programs and configura-
tions. The size of known-good measurements greatly limits
the practicability of the existing attestation schemes. For
example, free software and open-source software make it dif-
ficult, if not impossible, for existing attestation schemes to
verify the genuineness of the corresponding binary code.

From the perspective of software deployment, there are
usually two types of software: custom software and pre-
packaged software. Many software nowadays are based on
open-source software distributions, which greatly accelerate
the software development process. However, since the users
are in control of all the source files, they are able to tailor,
configure and build their own executables to be deployed in
their own environment. Even worse, they could also modify
the source files at their own discretion, which would make

the situation worse for attestation schemes. Custom soft-
ware can be configured and tailored according to the end
user’s requirements which cannot be predicted by the soft-
ware provider. For example, Linux kernel can be configured
and built for each and different platform, with different re-
quirements specified by the users. The result is that even
all users download a specific software from the same trusted
source website, the executables they built themselves could
all differ from each others.

Existing remote attestation schemes are not adequate to
verify these custom-built software, mainly because it is im-
possible to hold a known-good measurement database for
so many different programs of unpredictable versions. Al-
though existing property-based attestation schemes [4, 19]
introduced the concept of attesting programs based on their
properties, these stated properties are still tied to the binary
code. As a result, these property-based attestation scheme
still need a giant known-good binary database, which is still
not able to handle the custom software.

To deal with these challenges from custom software, we
propose SCOBA, a new Source COde Based Attestation
framework to solve the above problems and initiate an ef-
fort for applying remote attestation, one of the key TCG
features, in the free software community. The rationale of
our scheme is to link specified binary code of the customized
software with its source code, and certify the generated bi-
nary code of the software according to both its source code
and building configuration.

In order to validate the generated binary code of custom
software, we introduce a Trusted Building System (TBS) to
enable a trusted building process for compiling the custom
software (Figure 1). In the trusted building process, the
source code of the target program is tailored according to
the end user’s requirements and it is complied into binary
code with the TBS, in which the binary code is bound with
its corresponding source code and building configurations.
The building process can be attested to prove the validation
of the generated binary code. With the generated binary
code and its corresponding source code as well as building
configuration, a trusted verifier is introduced to certify the
property of the custom software (step a and step b in Figure
1). At runtime, challenger may use the certificate to enable
remote attestation on the custom software (step c and step
d in Figure 1). So the trust chain of our attestation scheme
can be built from the TPM to the building process, and
finally to the attested custom software at runtime.

This paper makes the following key contributions:

• SCOBA solves the problem of known-good measure-
ments database for custom software. With the pro-
posed framework, it becomes practical to attest cus-
tomized software in open networks. To our best knowl-
edge, it is the first effort for employing attestation to
enhance trust establishment on customized software,
especially for customized open-source software.

• The proposed Trusted Building System enables an-
other party to validate and certify the generated binary
code of custom software according to its source code
and building configuration. Existing solutions can not
attest custom software, because it has no way of vali-
dating the binary code of custom-built software.

• The source code based approach is a more practical
way to obtain the software property. As SCOBA binds

the source code files and building configuration of the
customized software, the trusted verifier may obtain its
property by evaluating and testing these information.

• The trusted verifier in SCOBA serves as the verifica-
tion agent, which can be customized to accommodate
different types of software. As a result, SCOBA pro-
vides a flexible framework, which can be customized
according to different types of software development
process, as demonstrated by the case study on Gen-
too.

The paper is organized as follows: we will give a brief in-
troduction on background in Section 2. Section 3 introduces
the design of SCOBA. Section 4 presents the implementa-
tion and evaluation on the prototype of SCOBA. Section 5
introduces the application of SCOBA in Gentoo. Section 6
introduces the related work. Section 7 discusses the possi-
ble solutions for improving our scheme and its application.
Section 8 concludes the paper and discusses the future work.

2. BACKGROUND

2.1 Custom Software
From the perspective of software deployment, there are

usually two types of software: custom software and pre-
packaged software. Custom software, which is also called
bespoke software, allows end user to design and implement
software based on its own requirements. Pre-packaged soft-
ware, or“off-the-shelf”software is released by software provider
with specified configurations, such as the installation pack-
ages under Windows, rpm packages and Debian packages
under Linux.

Sometimes custom software is referred to as configured
software, or customized software, which is tailored or cus-
tomized from the original version of delivered software. The
custom software starts from an existing structure and it is
flexible for various requirements. Free software and open
software are the most widely available custom software. Like
the Linux kernel, end users may modify and configure the
free software at will to satisfy their specific requirements.
However, such flexibility results large number of unpredictable
versions for binary code of free software.

In this paper, we will consider two kinds of custom soft-
ware: custom-built software–customizing without modify-
ing the source code files; fully custom software–customizing
with modifications on source code files. For the first type,
the users customize the software distribution before build-
ing, but do not modify individual source code files that are
attained from trusted parties. For the fully custom soft-
ware, users can modify the source code of the original soft-
ware. For the custom-built software, as it is supposed to
have fixed source code, SCOBA is able to automatically cer-
tify this type of customized software. For the fully custom
software, SCOBA may have to employ experts or more so-
phisticated certification techniques to certify these modified
source code, such as model checking and testing.

When considering their tailoring platform, compilation
platform and execution platform, the custom software de-
ployment can either take place all on the same platform, or
it could be performed on separated platforms. For example,
the compilation and execution are carried out on separated
platforms; the source code is tailored and built on a sep-
arated platform according to the end user’s requirements.

d. Challenge Response

Attester Platform Challenger

Trusted b. Certificate Response

c. Challenge Request

d. Challenge Response

Binary

Code Property

Certificate

e. Certificate

Verification

Attester Platform

Trusted

Verifier
a. Certificate Request

b. Certificate Response

Source

Code

Building

Configuration

Trusted

Building

Code Configuration

TPM

Figure 1: The overview of SCOBA

These approaches may require different designs and imple-
mentations of secure execution environment for the trusted
building process in our scheme, and this will be discussed in
Section 3.3 and Section 4. For most existing customized soft-
ware, the first approach with the same platform is the most
frequently used, thus we will focus on it most of the time
and point out the difference if separated platforms might be
used.

2.2 Dynamic Root of Trust
The TCG specifications introduce authenticated boot (or

secure boot) to prove or guarantee that the system is booted
into a secure state. The authenticated boot and secure boot
provide a static root of trust based on the TPM. How-
ever, the static root of trust can not guarantee the secu-
rity of a runtime system. With AMD’s Secure Virtual Ma-
chine (SVM)[2] and Intel’s Trusted Execution Technology
(TXT)[13], it becomes practical to provide a dynamic root
of trust for runtime system. The dynamic root of trust can
strongly support a secure domain for dedicated system at
runtime. Some studies for leveraging dynamic root of trust
to provide secure execution environment have already been
proposed, such as OSLO [15], Flicker [17] and TrustVisor
[16]. For custom software delivered on the same platform,
the end user may run the compilation process in the secure
domain, which is supported by a dynamic root of trust.

3. SCOBA DESIGN

3.1 Attestation Framework
To provide remote attestation for custom software, we pro-

pose a new source code based attestation framework called
SCOBA, which is illustrated in Figure 2. Instead of trying
to obtain a list of known-good measurement list, SCOBA
focuses on the source code, and provides a trusted build-
ing process to verify the resulting binaries according to the
source files and building configuration.

Three parties are involved in SCOBA: the challenger, the
attester and the trusted verifier. A typical scenario is as
follows: the builder configures, tailors and builds a custom
software P according to the challenger’s requirement; the
trusted verifier certificates the custom software by check-
ing its source code, compiling configuration, binary code
and records of building process; the builder delivers the cus-
tom software to the challenger with its certification; at run-

time, the challenger wants to attest the property of this
customized program; the challenger and attester will carry
out the attestation procedure for this free software with the
help of the trusted verifier.

Attester
The attester is the end user of a customized program P ,
which is executed on the attester platform. The attester
customizes the source code of program P and takes a trusted
building process to compile the source code into binary code.
The trusted building process is introduced in Section 3.3.
The attester employs a trusted verifier for property certi-
fication on the tailored program. The attester platform is
supposed to be equipped with TPM.

Challenger
The challenger needs to attest the customized software being
executed on the attester platform. The challenger requests
the attester platform to return the integrity measurement
and certificate of the target program. With these results,
the challenger requests the trusted verifier to verify the cer-
tificate to determine the property of the target program.

Trusted verifier
The trusted verifier carries out two key tasks: property certi-
fication on customized software; runtime certificate verifica-
tion. When the attester finishes the trusted building process,
it requests a property certification on the customized pro-
gram by sending all required source code, binary code and
other records of trusted building process to the trusted veri-
fier. The trusted verifier checks all these files and records to
conclude with certain property for the customized program.
At runtime, the challenger requests the trusted verifier to
verify the certificate of the target program with specific in-
tegrity measurement. The trusted verifier can be a Trusted
Third Party that issues property certificates and verifies cer-
tificates. The original provider of the program from which
the customized software originates, can naturally serve as
the role of trusted verifier.

3.2 Attester Platform
In the SCOBA framework, we assume that the attester

platform (shown in Figure 2) is equipped with TPM, TXT[13]
or SVM[2], the Secure Virtual Machine, the TCG software
stack and an Attestation Agent, as well as a trusted building

Attester Platform Trusted Verifier

Binary

Attester Platform

Trusted Building System
Known-good

source code file s

and

building configurations

Trusted Verifier

Runtime

System

application

Source

Building

Config
GCC

with

TBS

hooks

Binary

Code

Certification

building configurations

Challenger

Attestation

Agent

OS

Source

Code

Certificate Repository

And

Revocation List

Challenger

Verification

Secure Virtual Machine

Hardware

OS

Certificate

VerificationTXT/SVM TPM

Figure 2: SCOBA Framework

system. The attester has privileges in controlling the soft-
ware system on its platform. The attester platform may pro-
vide both static root of trust and dynamic root of trust. The
challenger can establish trust on the integrity of a trusted
domain based on Secure Virtual Machine with a dynamic
root of trust.

Two separated domains are supported by the Secure Vir-
tual Machine on the attester platform. One domain is a
normal domain for ordinary operating systems. We intro-
duce an attestation agent as the kernel module in the OS for
runtime monitoring and recording target applications. The
attestation agent is also responsible for communications be-
tween the challenger and attester platform. When the attes-
tation agent receives the attestation request from the chal-
lenger, it records the states of target program and returns
the target program’s measurement and property certificate
to the challenger. With the support of TPM and Secure
Virtual Machine, the integrity of the attestation agent can
be recorded for attestation each time before it starts.

The other domain is a secure domain that hosts a Trusted
Building System (TBS). The TBS provides a trustworthy
process for building these customized source code into binary
code. The Secure Virtual Machine leverages the TXT/SVM
facilities to provide a trusted domain for TBS. The building
process can be attested to prove its trustworthiness.

The attester platform in Figure 2 is designed for cus-
tomized software deployed on the same platform (Section
2.1). The TBS is supported by a dynamic root of trust. If it
is carried out on separated platforms, the attester platform
can have only the normal domain with attestation agent,
while the TBS can be host on another separated platform.
So TBS can run in a separated environment and its trust
chain can be built on a static root of trust.

3.3 Trusted Building System
The Trusted Building System provides a trusted compi-

lation process. A compilation process is considered trusted
if the integrity of its execution can be attested to be with-

out tampering. As a result, the compiled binary can be
guaranteed to be generated from the input source code with
specified configuration. In our scheme, the execution of TBS
is protected by the secure domain, which can be set up at
runtime based on a dynamic root of trust. TBS is supposed
to be the minimal size for carrying out a compiling task and
it is practical to implement the TBS with a thin OS and
necessary compilation tools, e.g., the Linux From Scratch
[1].

TBS records the states of all required proofs for program
property certification. At the beginning of the trusted com-
piling process, TBS needs to record the building configura-
tion. TBS records the state of compiled source code and
output binary code files in a fine-grained and exact way ac-
cording to their compiling order: the state of each source
code file is recorded immediately before compilation; the
state of each binary code file is recorded immediately when
it is output by the compiler; meanwhile, TBS also binds
the binary code file’s measurement with the records of its
corresponding source code files. In order to guarantee the
integrity of these records, TPM is employed to record the
states of all files.

3.4 SCOBA Procedure
The SCOBA procedure consists of three phases in our

scheme: trusted building phase (trusted building in Figure
1), certification phase (step a, step b in Figure 1) and at-
testation phase (step c, step d, step e in Figure 1). TBS
is responsible for the trusted building phase and records all
required proofs for property certification on the target pro-
gram. The trusted verifier issues the certificate according
to these records generated by TBS. During the attestation
phase, the challenger attests the target program with the
help of the trusted verifier.

For a program P , its binary code files Fe = {fe1 , fe2 , ..., fei}
is built from its corresponding source code files S = {fs1 ,
fs2 , ..., fsj} with specified building configurations C = {cs1 ,
cs2 , ..., csj} and other dependent files Fd = {fd1 , fd2 , ..., fdk},

where fe is an executable file of P , fsi denotes a source code
file for P and csj stands for the building configuration of
fsj . These building configurations may be stored in some
script files FC = {fc1 , fc2 , ..., fcm}, such as Makefile, .config
files on Linux and the building command options. Other
dependent files include mainly library files used during the
building process.

3.4.1 Trusted Building Phase
In the trusted building phase, we bind the binary code of

a program with its source code and building configuration.
By leveraging a secure domain and TPM, a trust chain is
built from the source code and building configuration to the
generated binary code.

In order to construct the trust chain from TPM, two
PCRs are employed in our scheme: one for authenticated
boot of TBS (PCRab) and another for the trusted building
process(PCRtbp). These two PCRs are reset at the initial-
ization stage of the secure domain. When the attester starts
the trusted building process, a secure domain is initiated
by the Secure Virtual Machine and the subcomponents of
TBS are measured and recorded with an authenticated boot
before it is about to run. After TBS finishes initialization,
it starts to compile the target source code files and records
the state of input and output files. TBS employs TPM to
record the compilation process with PCR extend. All in-
puts, intermediate outputs and generated codes are recorded
to attest the compilation process.

As shown in Figure 3, a typical compilation task is carried
out in roughly five stages: Preprocessing, Parsing, Transla-
tion, Assembling, and Linking. We may consider each stage
as a transformation process with certain inputs and outputs.
As shown in Figure 4, we may consider the compilation pro-
cess as a sequence of transformations. The output of each
prior stage can be the input of the next stage. The out-
put of each stage may be in different forms according to
different compiler implementations and building configura-
tions. Usually the output includes specific data structure in
the compiling process, and other supporting files. The TBS
records the states of these output files and binds it with its
corresponding inputs.

A transformation process T may have input files Fin =
{fin1 , fin2 , ..., fini} from the prior transformation process,
output files Fout = {fo1 , fo2 , ..., foj} and other dependent
files Fd(T) = {fd1 , fd2 , ..., fdk}. For example, the object files
generated by the Assembling process are the inputs files of
Linking stage; the executable files produced at the Linking
stage (F©) are output files; the library files at the Linking
stage are dependent files.

As shown in Figure 4, four key points for monitoring and
recording the trusted building process are identified:

• Point S©:the moment immediately before the initial-
ization of the building process ;

• Point A©:the moment immediately before a transfor-
mation process T is going to run;

• Point B©:the moment immediately after a transforma-
tion process finishes.

• Point F©:the moment immediately after the trusted
building process terminates ;

At each point, the monitoring and recording actions are
required to execute according to the following rules:

• Point S©: For all script files in FC that store the build-
ing configuration, TBS measures and extends them
with TPM: Hck = SHA1(fck), where SHA1 stands
for an SHA-1 hash function; HC = SHA1(Hc1 ||Hc2 ||...
||Hck); PCRtbp extend(HC). For all source code files
and corresponding configurations, TBS records their
states and extends them into the TPM: Hsi =
SHA1(fsi ||csi); HS = SHA1(Hs1 || Hs2 ||...|| Hsi);
PCRtbp extend(HS). If these building configurations
are stored in some configure files, these files are also
recorded and extended by the TPM.

• Point A©: At the beginning of a transformation pro-
cess T , all files in Fin are recorded and extended by
TPM: Hini = SHA1(fini); Hin(T) = SHA1(Hin1 ||
Hin2 ||...||Hini); PCRtbp extend(Hin(T)). All depen-
dent files, if exist, are also recorded and extended by
TPM: Hdi = SHA1(fdi); Hd(T) = SHA1(Hd1 ||Hd2 ||
...||Hdi); PCRtbp extend(Hd(T)).

• Point B©: TBS records the state of all output files and
employs TPM to extend their measurements: Hoi =
SHA1(foj); Hout(T) = SHA1(Ho1 || Ho2 ||...|| Hoi);
PCRtbp extend(Hout(T)). For an output file foj , all
input files which determine the generation of foj are
also recorded in set: Fin(foj) = {finj1 , finj2 , ..., finji |
finji ∈ Fin}.

• Point F©: At the termination stage of compilation,
TBS records the states of all output executable files:
Hei = SHA1(fej); He = SHA1(He1 || He2 ||...||Hei);
PCRtbp extend(He). At last, TBS will employ the
TPM to generate a signature on the final values in
PCRs:

Quotetbp = sig{PCRtbp}AIKpriv

Quoteab = sig{PCRab}AIKpriv

where AIKpriv is the private attestation key of TPM.

As the TPM extends all these records in sequence, an
unbroken chain is established between the generated binary
code and the source files with a given building configuration.

3.4.2 Certification Phase
After the trusted building process terminates, the attester

sends a certificate request to a trusted verifier (step a) with
the following messages:

{Fe, S, FC , He, HS , HC , Hin, Hd, Hout, PCRtbp, PCRab,
Quotetbp, Quoteab, AIKpub, cert{AIKpub}, SIGM}

where SML stands for Stored Measurement Log, AIKpub

stands for the public attestation key of TPM, cert{AIKpub}
means the trusted certificate of TPM, Hin = {Hin(T1),
Hin(T2), ..., Hin(Ti)} is the set of input file records for all
transformation processes, Hd = {Hd(T1), Hd(T2), ..., Hd(Ti)}
is the set of dependent file records for all transformation
processes, SIGM is the signature of these message which
is generated with the session keys between the attester and
trusted verifier. We assume that the communications be-
tween the attester and trusted verifier are protected. When
the original provider of the customized software plays as the
trusted verifier, it is not necessary to send all source code

Preprocessor
Source Code

Parser
Source w/Substitutions

Translation

Parse Tree

Object File
Translation

Assembler AssemblyLinker

Object File
Object File

…
Executable

File

Figure 3: A typical compilation process in a trusted building phase.

Outputs

…

Inputs

…Transformation

Initialization Termination

Source Code

Configuration Executable

File

…
…

SS
AA BB FF

Fin
Fout

Dependent files

Figure 4: The detailed steps in a transformation process.

and configuration back to the trusted verifier. Only an up-
date based on a standard version is required, such as the
case with the Linux kernel patch.

The trusted verifier can conclude with certain properties
for P by examining the received messages with following
steps:

• First, the trusted verifier needs to attest the validation
of TPM by checking its certification cert{AIKpub} and
verify the integrity of messages.

• Second, it verifies the authenticated boot of TBS by
checking PCRab and Quoteab.

• Third, the verifier validates the trusted building pro-
cess by checking PCRtbp, Quotetbp according to Fe,
S, HC , He, HS , Hin, Hd, Hout. Specially, the in-
tegrity of intermediate output files are required to be
checked. For a input file fini ’s record Hini in transfor-
mation process (Ti+1), Hini should be consistent with
its record Hoj as output file in Ti.

• Finally, with all prior steps succeeded, the verifier will
examine the source code, building configurations and
binary code to determine the property of P . We will
introduce a semantic approach of certifying the build-
ing configurations and source code in Section 3.5.
If any of the above steps fails, the certification phase
terminates with failure.

With a successful result, the trusted verifier issues the
certificate on P and returns it to the attester platform (step
b in Figure 1):

cert(TV, p, He) =
(He, HS , Hd, HC , p, sig{He||HS ||Hd||HC ||p}SKT V)

where (PKTV , SKTV) is the key pair of trusted verifier
TV for signature, p is a property, cert(TV, p, He) denotes
the property certificate for P . With the certificate cert(TV,
p, He), the trust chain is linked from the source code to the
properties of generated binary code via a trusted building
process.

3.4.3 Attestation Phase
In the attestation phase, we assume the attestation target

program is P . The challenger first sends a challenge request
to the attester with a nonce (step c in Figure 1). Then the
attester platform employs the attestation agent to collect
the state and certificate of P . These records are sent back
to the challenger as the challenge response (step d in Figure
1). Then the challenger may verify the certificate with the
help of the trusted verifier and concludes with an attesta-
tion result on P (step e in Figure 1). During the verification
stage in the attestation phases, challenger only has to sub-
mit the collected certificates to the trusted verifier to verify
its validation, and with a successful verification result, the
challenger can verify the runtime measurements according
to these certificates.

3.5 Property Certifying via Semantic Verifi-
cation on Building Configuration

During the certification phase, the trusted verifier needs to
certify the program by examining the source code and build-
ing configuration to judge the property of the generated bi-
nary code. The property of the binary code is strictly linked
with the building configuration. Let’s take Gentoo Linux [9]
as an example: Gentoo Linux employs Use Variable Descrip-
tions (Global/Local Use Flags) to indicate which software
features are included, and finally generates packages with
different properties. Meanwhile, the source code of differ-
ent versions hold different properties. The trusted verifier
maintains a database for recording the properties according
to their source code versions and building configurations.
The trusted verifier will use this database to check the re-
ceived source code and building configurations to determine
the property of generated binary code.

It is straightforward to manually examine the building
configuration according to standard configurations and lim-
itations. However, it involves a lot of unnecessary effort, and
it may involve human faults when it comes to a large number
of configurations. With the cryptographic hash functions, it
is also possible to automatically examine the hash values of
the building configuration files, when only limited and pre-
dictable configurations exist according to involved program
properties. However, the building configurations may have

huge amount of possible candidates and sometimes even in-
finite. When an option can be set as a floating value, the
number of hash values for possible configuration files are
almost infinite.

Fortunately, the building configurations are usually orga-
nized in a well-defined form, such as the Makefile, command
options and .config files. Thus it is practical to examine the
building configurations in a semantic way. We may con-
sider a building configuration file as a collection of option
pairs < option, value >. The trusted verifier has a set of
criteria items < option, criteria, operation, p > according
to a specific program property p. The operation is deter-
mined by the type of option value. For example, the pos-
sible operations for integer values or floating values can be
equal,unequal,smallerthan, etc. The operation set for all
criteria can be determined according to the syntax of con-
figuration file. In order to check whether the building con-
figurations satisfy a certain property, an automatic process
can be carried out to compare the option value with corre-
sponding criteria according to specified operation. When
the criteria of a specific program property is satisfied, the
trusted verifier can conclude that the building configurations
are with the property.

To perform semantic attestation on software configura-
tions, we can apply a similar approach recently proposed in
[24].

3.6 Property Certificate Revocation
It is possible that a program P , which is built based on

a specific version of source code and building configuration,
may be later found to be vulnerable or erroneous. So the
trusted verifier needs to maintain a certificate revocation list
to be able to revoke the corresponding property certificate.
Once a program is identified as vulnerable, the correspond-
ing certificate is added into the revocation list. During the
attestation phase, the challenger is required to first check
whether the property certificate is in the revocation list at
certificate verification step (step e in Figure 1).

4. SCOBA IMPLEMENTATION FOR OPEN-
SOURCE SOFTWARE

The proposed SCOBA framework could be applied to gen-
eral custom software, however, it is most suitable for custom
open-source software, where automatic attestation could be
provided based on the open-source distributions. In this
section, we apply SCOBA specifically to deal with custom
open-source software, where users are allowed to tailor and
configure the downloaded software, but are not allowed to
modify the specific source code files. For cases of modifying
source code, we will discuss it in Section 7.

We implement a prototype of this SCOBA framework to
demonstrate its practical usage. Particularly, we focus on
the customized open-source software on the Linux platform.

4.1 Attester Platform
We employ XEN [3] supported by the TXT facility as

the Secure Virtual Machine. Ubuntu Linux is chosen as
the operating system to host our prototype. In our imple-
mentation, we use Linux to run in two different domains
of XEN: one is for ordinary applications in the ordinary do-
main of XEN and another is for the Trusted Building System
in a protected domain. For the ordinary one, we introduce

the attestation agent module as a Linux Security Module to
monitor and record the execution of applications. For the
TBS, we configure the Linux kernel via Linux From Scratch
to get a minimal kernel to support the compilation tools,
which carries out a trusted building process. We employ
TXT to dynamically set up the secure domain for TBS [5].

4.2 Trusted Verifier
Trusted verifier maintains following repositories: a repos-

itory of known-good source code files and building configu-
rations, a certificate repository, and a revocation list.

The known-good repository helps the trusted verifier to
certify customized software. The known-good repository
also records the properties of a software with specific source
code files and building configurations for certain versions.
The trusted verifier can automatically obtain the property
of the target customized software. The certificate repository
holds the records of all issued certificates and revocation list.
The trusted verifier employs it to finish the certificate veri-
fication.

4.3 Trusted Building System
The Trusted Building System is the core of our scheme,

and we will study its implementation based on GCC (GNU
project C and C++ compiler) on Linux.

The GCC compilation process normally involves four steps:
preprocessing, compiling, assembling and linking. The pre-
processing step usually does not involve intermediate out-
puts, so TBS only has to monitor the intermediate outputs
of following steps: compiling, assembling and linking. At
the beginning of the above steps, we insert hooks into gcc,
as and ld to monitor the inputs and outputs of these trans-
formation processes. These hooks employ TPM to record
the states of these inputs and outputs, and extend these
records with the PCR extend operation. At the end of the
compilation process, TPM is invoked to generate quotes on
these recorded proofs. In order to counter the “Time-of-
measurement and Time-of-use” issue, we employ a similar
mechanism as IMA [21] to deal with this problem.

4.4 Evaluation
We evaluate our prototype of TBS on a Lenovo ThinkPad

X60 laptop with Intel Core 2 CPU T5500 @ 1.66GHz, and
1GB memory. We build a number of open-source appli-
cations with and without the proposed prototype, and the
performance comparison is shown in Table 1.

In the table, we show the number for source code files,
compilation time before and after applying the proposed
scheme for each application. The cost for recording these
proofs are roughly proportional to the number of source
files in each application. The results show that TBS incurs
roughly 2-4X slowdown on the evaluated benchmarks. The
exception is TPM tools, which has an overhead of almost
15X because it involves only a handful of source files, thus
the compilation time is relatively very short.

The overhead is pretty significant because of the large
amount of TPM extend operations and low computation ca-
pability of TPM. However, the cost is still acceptable in
practice, as TBS is only executed once for each build imme-
diately before the certification.

Table 1: Comparison of compilation time before and after applying the proposed scheme.
applications # of source code files GCC-4.4.2 GCC-4.4.2 with TBS hooks

TPM-tools-1.3.4 59 14402 ms 209814 ms
Openssl-0.9.8k 1267 158106 ms 1318902 ms
Gmp-4.3.0 898 160279 ms 646499 ms
Trousers-0.3.1 326 118463 ms 345175 ms
Tboot-20090330 429 133646 ms 405173 ms
Linux-2.6.30 23214 7007143 ms 29034100 ms

5. CASE STUDY: APPLYING SCOBA TO GEN-
TOO

Gentoo [9] is a free operating system based on either Linux
or FreeBSD that can be automatically optimized and cus-
tomized for just about any application. Most applications
are distributed in the form of source code in Gentoo and its
package management tool Portage is responsible for build-
ing and installing these applications. We can apply SCOBA
straightforwardly to Portage to support attestation on cus-
tom software in Gentoo systems. Besides our modified GCC
compilation tools with TBS hooks, we may also leverage
Portage to provide a more flexible monitoring and recording
mechanism for attesting customized software in Gentoo.

Portage is the heart of Gentoo, and performs many key
functions. It serves as the software distribution system for
Gentoo. It can maintain a local Portage tree which contains
a complete collection of scripts that can be used by Portage
to create and install the latest Gentoo packages. Portage
is also a package building and installation system. It will
build a custom version of the package to the user’s exact
specifications, optimizing it for the hardware and ensuring
that only the optional features in the package that the users
want are enabled.

Portage is characterized by its main function: compiling
from the source code of these packages that the user in-
stalls. In doing so it allows customizing package functional-
ities to the user’s own wishes, and customizing all packages
to the systems specifications. In order to accomplish this,
several functionalities are provided. Functionalities concern-
ing managing the system are: allowing parallel package ver-
sion installation, influencing cross-package functionalities,
managing an installed-packages database, providing a local
ebuild (explained later) repository, and syncing of the lo-
cal Portage tree with remote repositories. Functionalities
concerning installing the individual package are: specifying
compilation settings for the target machine, and influencing
specified package components.

The basis for the entire Portage system is the ebuild scripts.
They contain all the information required to download, un-
pack, compile and install a set of sources, as well as how to
perform any optional pre/post install/removal or configura-
tion steps. An ebuild is a specialized bash script format cre-
ated by the Gentoo Linux project for use in its Portage soft-
ware management system, which automates compilation and
installation procedures for software packages. Each version
of an application or package in the Portage repository has
a specific ebuild script written for it. The script is used by
the emerge tool, also created by the Gentoo Linux project,
to calculate any dependencies of the desired software in-
stallation, download the required files (and patch them, if
necessary), configure the package, compile, and perform a

sandboxed installation. Upon successful completion of these
steps, the installed files are merged into the live system, out-
side the sandbox.

Base on the characteristics of Gentoo, we can easily extend
TBS into the Gentoo Portage, and hence support trusted
building in Gentoo. There are a number of different func-
tions that we can define in ebuild files that control the build-
ing and installation process of the package. Hence, we can
add specific TBS hooks in the call-sites of these functions in
Portage to perform monitoring on the trusted building and
installing procedure. These functions include:

• Pkg setup: This function can perform any miscella-
neous prerequisite tasks. This might include checking
for an existing configuration file. We can add functions
to initialize a trusted and isolated environment for the
building procedure.

• Src unpack: This function unpacks the sources, ap-
plies patches, and runs auxiliary programs such as
the autotools. We can initialize the trusted measure-
ment repository for all the source codes. Normally,
the source codes are distributed in a single compressed
package (e.g. tar file). Hence we should first gener-
ate the genuine measurement value for each file in the
package (e.g. source codes, configuration files, etc.)
from the signed measurement value of the source code
package.

• Src compile: This function configures and builds the
package. We can integrate our trusted building mech-
anisms here.

Moreover, the following functions can be modified for im-
plementing advanced trusted installation procedures, e.g.
generating proof chains or related certificates.

• pkg preinst: The commands in this function are run
just prior to merging a package image into the file sys-
tem.

• Src install: This function installs the package to the
destination.

• Pkg config: This function sets up an initial configu-
ration for the package after it’s installed.

• Pkg postinst: The commands in this function are exe-
cuted immediately following merging a package image
into the file system.

The package repository of Gentoo is in the best position to
serve as the trusted verifier. Besides the package data, the
package repository also maintains the corresponding prop-
erty information in order to certify customized software. In

order to support runtime certificate verification, the package
repository maintains the certificate repository and revoca-
tion list.

6. RELATED WORK
Since TCG attestation was introduced as a key feature in

the TCG specification[23], many remote attestation schemes
have been proposed in the literature. Terra [7] employs a
Trusted Virtual Machine Monitor (TVMM) to transform a
tamper resistant hardware platform into multiple isolated
virtual machines (VMs). With the protection of the trusted
hardware, TVMM offers both the open-box VM and the
closed-box VM. The attestation in TVMM only measures
the programs before their executions and is not able to check
their behaviors after attestation. As an extension of TCG
attestation, IMA [21] employs a loading time integrity mea-
surement mechanism which measures all software compo-
nents including BIOS, the OS loader, the operating system,
and programs at the application layer. The limitation of
integrity-based attestation such as IMA is that it checks at
the loading time. Since there exists a gap between time of
measurement and time of execution, loading time integrity
does not necessarily lead to stronger security assurance. As
a follow-up of IMA, [20] employs IMA to enforce remote
access control by attestation.

Property-based attestation [4, 19, 18] was introduced to
provide a scalable attestation framework to support privacy
preserving for the attester platform. A trusted third party
is introduced to exam the runtime measurements and judge
the property of the target platform. The challenger only
verifies the property certificate to conclude the attestation
result and the configuration information of the attested plat-
form is preserved. Existing schemes of TCG attestation
and property-based attestation are based on the known-good
measurements of these attested programs.

Haldar et al. [12] introduced a semantic attestation mech-
anism based on the Trusted Virtual Machine (TVM). The
TVM based semantic attestation mechanism enables the
remote attestation of high-level program properties. Shi
et al. proposed a fine-grained attestation scheme called
BIND [22]. It provides evaluation interfaces to attest the
security-concerned segments of code. Jaeger et al. [14] in-
troduced the Policy-Reduced Integrity Measurement Archi-
tecture (PRIMA) based on the information flow integrity
checking against the Mandatory Access Control (MAC) poli-
cies. Program execution attestation introduced in [11] is to
attest whether a program is executed as expected. These
semantic attestation mechanisms still require a know-good
binary code repository.

However, most of the existing schemes are still based on
binary attestation, as it plays an important role for authen-
tication on software. As the binary attestation involves veri-
fication on the measurement of binary code, most of existing
schemes have to face the problem of keeping a huge known-
good measurements database in practical solutions.

Trusted Execution Technology (TXT) and Secure Virtual
Machine (SVM) are introduced to provide a trusted execu-
tion environment. Recent years, there are already several
practices [8, 15, 17] exploiting TXT or SVM. Open Secure
LOader (OSLO) [15] leverages the dynamic root of trust to
implement a bootloader based on AMD SKINIT instruc-
tion. Flicker [17] was introduced as an infrastructure for
executing security sensitive code in complete isolation. It

leverages the Secure Virtual Machine (SVM) of AMD pro-
cessors and provides fine-grained attestation on program ex-
ecution. LaLa [8] combines the latest hardware virtualiza-
tion and trust technologies to deliver a more robust platform
to support both instant-on system and a full-featured OS,
and the flexible architecture enables a platform user to ben-
efit from the advantages of a fast booting platform and a
full-featured mainstream OS at the same time.

7. DISCUSSION
The proposed SCOBA framework could be applied to gen-

eral custom software provided that a trusted verifier could
be provided for all source files and configurations, which is
not always practical. Here we discuss some of the limitations
and possible enhancements of the proposed approach.

Selection of Trusted Verifier
It is important to choose the right party to play as the role
of trusted verifier. In order to certify a customized software,
the trusted verifier is supposed to have enough knowledge
for carrying out the certification process. The provider of
the original software holds the best position to serve as the
role of trusted verifier for certifying the property of the cus-
tomized software. However, when the original provider is
not trusted or not available, a trusted third party can be
employed and it should maintain a repository to store the
property information of all known-good source code, which
may come from different software providers, another trusted
third party or trusted agent for software certification.

Automatic source code certification on custom-
built software
For a custom-built program with only variant building con-
figurations, the trusted verifier can employ semantic verifica-
tion to automatically examine the building configurations.
If the custom-built software does not make any modifica-
tions on the source code, the trusted verifier can maintain
a repository of known-good source code files according to
specific properties. In the certification phase, the proofs of
trusted building process for the target custom software can
be automatically analyzed to conclude its property.

Attestation on fully custom software
For fully custom software, users may modify the source code
of the target custom software or even add new source code
files into the software. It is difficult for a trusted verifier to
automatically certify the modified source code. A straight-
forward way is to have experts manually checking these mod-
ifications and determine the property of the custom software.
For programs with source code modifications at lower gran-
ularity (such as instructions), besides the manual verifica-
tion on these modified codes, the trusted verifier can also
employ more sophisticated certification techniques for auto-
matic program certification, such as testing [6] and model
checking. The certification on a whole customized software
can be accomplished by certifying its software components
[10]. The custom software may be built from scratch, and
its source code files or subcomponents may come from other
open source software. So it is possible to automatically
certify these subcomponents from known software distribu-
tions.

Supporting semantic based attestation on cus-
tom software
The proposed scheme can serve as a building block for other
types of semantic based attestation [12] on customized soft-
ware. Different types of semantic attestation solutions may
concern different properties of software. However, the in-
tegrity of a program is the basis for all different solutions.
Our scheme provides the possibility to attest the customized
software with unpredictable versions and configurations.

8. CONCLUDING REMARKS
In this paper, we introduce SCOBA, a source code based

attestation scheme for custom software. SCOBA enables
property attestation on custom software with unpredictable
versions and building configurations. With a trusted build-
ing process, SCOBA binds the binary code of a program
with its source code and building configuration. Then a
trusted verifier is able to certify the generated binary code
with the proofs from the Trusted Building System and deter-
mine the property of the target custom software by checking
the source code and building configurations. Thus SCOBA
links the trust chain between TPM to the runtime attested
custom software. We implement a prototype of SCOBA
based on GCC compilation tools and TPM. Experiments
show that the performance is acceptable in practice. We
also studies the application of SCOBA on Gentoo to sup-
port attestation on free software distributed in the source
code form. With the support of SCOBA, it is possible for
the free software community to employ remote attestation,
one of the key TCG feature, to support trust establishment
on applications in an open networking environment.

9. REFERENCES
[1] Linux From Scratch.

http://www.linuxfromscratch.org/index.html.

[2] AMD. AMD64 Virtualization Codenamed “Pacifica”
Technology–Secure Virtual Machine Architecture
Reference Manual. Technical Report Publication
Number 33047, Revision 3.01, AMD, May 2005.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, volume 37, 5 of Operating Systems Review,
pages 164–177, Oct. 19–22 2003.

[4] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R.
Sadeghi, and C. Stüble. A protocol for property-based
attestation. In STC ’06, pages 7–16, New York, NY,
USA, 2006. ACM Press.

[5] J. Cihula. Trusted Boot: Verifying the Xen Launch.
http://www.linuxfromscratch.org/index.html. Xen
Summit 07 Fall.

[6] G. Fink and M. Bishop. Property-based testing: a new
approach to testing for assurance. In ACM SIGSOFT
Software Engineering Notes, volume 22(4), 1997.

[7] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra a virtual machine-based platform for
trusted computing. In SOSP 2003, Bolton Landing,
New York, USA, October, 2003.

[8] C. Gebhardt and C. Dalton. Lala: a late launch
application. In STC ’09: Proceedings of the 2009 ACM
workshop on Scalable trusted computing, pages 1–8,
New York, NY, USA, 2009. ACM.

[9] Gentoo. Gentoo Linux. http://www.gentoo.org/, 2009.

[10] A. K. Ghosh and G. McGraw. An approach for
certifying security in software components. In Proc.
21st NIST-NCSC National Information Systems
Security Conference, pages 42–48, 1998.

[11] L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei.
Remote attestation on program execution. In S. Xu,
C. Nita-Rotaru, and J.-P. Seifert, editors, STC, pages
11–20. ACM, 2008.

[12] V. Haldar, D. Chandra, and M. Franz. Semantic
remote attestation—a virtual machine directed
approach to trusted computing. In the Third virtual
Machine Research and Technology Symposium (VM
’04). USENIX., 2004.

[13] Intel Corporation. Intel trusted execution technology
— preliminary architecture specification. Technical
Report Document Number: 31516803, Intel
Corporation, 2006. ftp://download.intel.com/
technology/security/downloads/31516803.pdf.

[14] T. Jaeger, R. Sailer, and U. Shankar. PRIMA:
policy-reduced integrity measurement architecture. In
SACMAT ’06, pages 19–28, 2006.

[15] B. Kauer. OSLO: Improving the security of Trusted
Computing. In Proceedings of the 16th USENIX
Security Symposium, 2008.

[16] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2010.

[17] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. In J. S. Sventek and S. Hand, editors,
EuroSys, pages 315–328. ACM, 2008.

[18] J. Poritz, M. Schunter, E. Van Herreweghen, and
M. Waidner. Property attestation—scalable and
privacy-friendly security assessment of peer computers.
Technical Report RZ 3548, IBM Research, May 2004.

[19] A.-R. Sadeghi and C. Stüble. Property-based
attestation for computing platforms: caring about
properties, not mechanisms. New security paradigms,
2004.

[20] R. Sailer, T. Jaeger, X. Zhang, and L. v. Doorn.
Attestation-based policy enforcement for remote
access. In CCS 04, October 25-29, 2004.

[21] R. Sailer, X. Zhang, T. Jaeger, and L. v. Doorn.
Design and implementation of a tcg-based integrity
measurement architecture. In Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, USA,
August, 2004.

[22] E. Shi, A. Perrig, and L. V. Doorn. Bind: A
fine-grained attestation service for secure distributed
systems. In 2005 IEEE Symposium on Security and
Privacy, 2005.

[23] Trusted Computing Group. TPM main specification.
Main Specification Version 1.2 rev. 85, Trusted
Computing Group, Feb. 2005.

[24] H. Wang, Y. Guo, and X. Chen. Saconf: Semantic
attestation of software configurations. In ATC ’09:
Proceedings of the 6th International Conference on
Autonomic and Trusted Computing, pages 120–133,
2009.

