
Practical Property-based Attestation on Free
Software

Liang Gu1, Anbang Ruan1,2, Yao Guo1, Qingni Shen1,2, Xiangqun Chen1

1Key Laboratory of High Confidence Software Technologies (Ministry of Education),
Institute of Software, School of EECS, Peking University.

2School of Software and Microelectronics, Peking University.
Beijing. China.

1{guliang05,yaoguo,cherry}@sei.pku.edu.cn, 2{ruanab, shenqn}@infosec.pku.edu.cn

Abstract—Existing attestation schemes still tie the property
with binary code of program and they have to hold a large
number of known-good measurements. However, free software is
usually configured and optimized by end user and it is impossible
for existing schemes to attest the customized free software of
unpredictable versions. We introduce a source code based attes-
tation scheme on free software. The binary code of a program
is bound with its source code and building configuration. The
property of a program is obtained by examining its source code
and building configuration, and a certificate is issued by a trusted
verifier. We implement our prototype based on Gentoo and its
Portage, which is a source code based package management
system. Our scheme makes an effort to provide a key TCG
feature—-remote attestation for free software community.

Keywords-remote attestation; trusted computing; property
based attestation; free software;

I. INTRODUCTION

Many IT systems nowadays are conducted on open com-
puter platforms across heterogeneous domains or over the
public Internet. Entities in such open, distributed and dynamic
environment usually behave on their own behalf and may not
trust each other for mission-critical operations or transactions.
Remote attestation provides an important way to establish trust
on parties in open network. In TCG’s trusted computing stan-
dard, remote attestation allows a challenging platform, usually
referred to as a challenger, to verify the configuration integrity
of a remote platform (i.e. an attester). Recent years have
witnessed various evolutions out of the basic TCG attestation
in many dimensions, including program semantics attestation
[5], security policy enforcement [7], property attestation [3, 8].

It is still difficult for these existing schemes to handle
some problems to achieve practical attestation solutions for
programs, especially for free software. First, as most of
existing schemes are based on binary code of software, it
is difficult to hold a known-good measurement database for
so many different programs with various versions. Although
existing property-based attestation schemes [3, 8] introduced
the concept of attesting programs based on their properties,
these stated properties are still tied to the binary codes of
programs. As a result, these property-based attestation still
need a giant known-good binary database, which is required by
the Trusted Third Party for binary code certification. Second,
it is difficult to conclude with certain properties by simply
checking the binary code of the specified software. Third,
in some cases, it is even impossible to hold all known-
good measurements for possible binaries. Some programs are
distributed via source code, like free software. End users may
configure and tailor the source code to build the binary code
as a customized version and it is impossible to hold binary
codes of all possible versions. So it is difficult for another

party to attest integrity of customized free software by only
employing existing attestation solutions. As a result, existing
attestation schemes are not adequate for free software.

We propose a source code based attestation to solve above
problems and initiate an effort for applying the key TCG
feature—-attestation in free software community. Our scheme
binds the binary code with its corresponding source code
and building configurations, and the properties of specified
binary code can be certified by a trusted verifier via checking
the source code and building configuration. At runtime, the
challenger only has to verify the property certificate of target
binary code. Our scheme applies for free software and also
support practical property certificate for ordinary programs.

II. SCHEME DESIGN

Challenger
Attester Platform

Trusted

Verifier

a. Certificate Request

b. Certificate Response

c. Challenge Request

d. Challenge Response

Source

Codes

Building

Configuration

Binary

Code
Property

Certification
e. Property

Verification

TPM

Trusted

Building

Fig. 1. Source code based attestation framework

A. Attestation Framework
Our source code based attestation framework is shown in

Figure 1. Three parties are involved in our scheme: The
challenger, the attester and the trusted verifier. A typical
scenario is as follows: the attester configures and builds a free
software P on its platform; at runtime, the challenger wants to
attest the property of this customized program; the challenger
and attester will carry out the attestation procedure for this
free software with the help of the trusted verifier.

B. Attestation Procedure
For a program P , its binary code BC is built from corre-

sponding source code SCs = {sc1, sc2, ..., sci} with specified
building configuration CF , where sci denotes a source code
file in all P ’s source code. In our scheme, we bind the binary
code with its source code and building configuration, and
we bind the property of software with its source code and
building configuration. Two phases are involved in our scheme:

certification phase (step a, step b in Figure 1) and attestation
phase (step c, step d, step e in Figure 1).

In the certification phase, the customized P is certificated
by a trusted verifier. First, the attester platform carries out a
trusted building process to generate the binary code from the
customized source code and building configuration. At the end
of the trusted building process, P ’s BC is bound with SCs
and CF with a TPM signature as follows :

HBC = SHA1(BC);
HSCs = SHA1(sc1||sc2||...||sci);

HCF = SHA1(CF);
TPM extend(HBC||HSCs||HCF);

SIGP = sigAIKpriv
(HBC||HSCs||HCF).

Then, attester sends certificate request to a
trusted verifier (step a) with following messages:
{BC,SCs, CF, SIGP , SML}, where SML is for Stored
Measurement Log. Usually it is not necessary to send all
SCs. Only an update based on a standard version is required,
like the Linux kernel patch. The trusted verifier can conclude
with certain properties for P by examining the received
messages. With a successful result, trusted verifier issues a
certificate on P and returns it to the attester platform (step
b):

cetrPK(TV, pp,HBC) = (HBC, HSCs, HCF, pp, SIGP)

where PK is the public key of trusted verifier TV , pp is
a property, cetrPK(TV, pp,HBC) is a property certificate
for P .When P with certain SCs and CF is found to be
vulnerable, trusted verifier has to follow a revocation protocol
to revoke corresponding property certificate.

In the attestation phase, when the challenger requests for an
attestation on the program(step c), the attester platform may
response with the program’s integrity measurement and certifi-
cate(step d). Then the challenger may verify the certification
from the trusted verifier(step e).

C. Attester Platform
The attester in our model has full privileges in controlling

the software system on its platform (Figure 2), except the
Secure Virtual Machine, TCG software and Attestation Agent.
With TPM and TXT[6]/SVM[1], the attester platform may
provide both static root of trust and dynamic root of trust, and
we may establish the trust on the integrity of a trusted domain
based on Secure Virtual Machine.

Secure Virtual Machine

Hardware

Attester Platform

Attestation

Agent

Operating System

TPMTXT/SVM

Trusted

Building

System

application

Fig. 2. Architecture of attester platform

Two separated domains are supported by the Secure Virtual
Machine on attester platform. One is a normal domain for
ordinary operating system. We introduce an attestation agent
as kernel module in the OS for runtime measurements on ap-
plications. With support of TPM and Secure Virtual Machine,
the integrity of attestation agent can be recorded for attestation
each time it works.

Another is a secure domain which hosts a Trusted Building
System (TBS), and this TBS provides a trustworthy process

for building these customized source code into binary code.
The Secure Virtual Machine leverages the TXT/SVM facilities
to provide a trusted domain for TBS. The building process can
be attested to prove its trustworthy.

D. Property Certification
For program with only variant building configurations,

trusted verifier can employ automatic tools to examine the
building configurations. For program with source code modifi-
cations at lower granularity, like instruction, trusted verifier re-
quires more sophisticated verification techniques for program
certification, like program transformation.

III. IMPLEMENTATION

We employ XEN[2] supported by TXT facility as the Secure
Virtual Machine. Gentoo Linux [4] is chosen as the operating
system to host our prototype. Gentoo and its applications are
distributed as source code and can be optimized and cus-
tomized for just about any application. In our implementation,
Gentoo is used in two ways: one for ordinary applications
in the ordinary domain of XEN and another for the TBS
in a protected domain. For the ordinary one, we introduce
the attestation agent module as a Linux Security Module to
monitor and record the execution of applications. For the TBS,
we configure the Gentoo to have minimal kernel to support its
Portage package management system and the Portage plays
the key role in TBS to build source code. We introduce a
module in the reduced Gentoo to employ TPM facilities for
monitoring and recording the building process. We will show
our implementation result later in a full version.

IV. CONCLUSION AND FUTURE WORK

With the support of our scheme, it is possible for free
software community to employ the key TCG feature—-remote
attestation, to support trust establishment on applications in
open networks. After we finish the implementation, we will
make it available for the free software community.

V. ACKNOWLEDGEMENTS

This work is supported by the National Basic Research
Program of China (973) under Grant No. 2009CB320703 and
the Science Fund for Creative Research Groups of China under
Grant No. 60821003.

REFERENCES
[1] AMD. AMD64 Virtualization Codenamed “Pacifica” Technology–Secure

Virtual Machine Architecture Reference Manual. Technical Report
Publication Number 33047, Revision 3.01, AMD, May 2005.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In SOSP, volume 37, 5 of Operating Systems Review,
pages 164–177, New York, October 19–22 2003. ACM Press.

[3] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-
Reza Sadeghi, and Christian Stüble. A protocol for property-based
attestation. In STC ’06, pages 7–16, New York, NY, USA, 2006. ACM
Press.

[4] Gentoo. Gentoo Linux. http://www.gentoo.org/, 2009.
[5] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote

attestation—a virtual machine directed approach to trusted computing.
In the Third virtual Machine Research and Technology Symposium (VM
’04). USENIX., 2004.

[6] Intel Corporation. Intel trusted execution technology — preliminary ar-
chitecture specification. Technical Report Document Number: 31516803,
Intel Corporation, 2006.

[7] Trent Jaeger, Reiner Sailer, and Umesh Shankar. PRIMA: policy-reduced
integrity measurement architecture. In SACMAT ’06, pages 19–28, New
York, NY, USA, 2006. ACM Press.

[8] Ahmad-Reza Sadeghi and Christian Stble. Property-based attestation for
computing platforms: caring about properties, not mechanisms. New
security paradigms, 2004.

